Презентация на тему Функция y = cos x. Ее свойства и график

Содержание

Слайд 2

Наумова Ирина Михайловна

Сегодня мы рассмотрим

Построение графика функции y = cos x;
Свойства функции

Наумова Ирина Михайловна Сегодня мы рассмотрим Построение графика функции y = cos
y = cos x;
Изменение графика функции y = cos x в зависимости от изменения функции и аргумента;
Изменение свойств функции y = cos x в зависимости от изменения функции и аргумента;
Примеры построения графиков функций путем анализа изменения их свойств.

Слайд 3

Наумова Ирина Михайловна

Построение графика

Функция y = cos x определена на всей числовой

Наумова Ирина Михайловна Построение графика Функция y = cos x определена на
прямой и множеством ее значений является отрезок [-1; 1]. Следовательно, график этой функции расположен в полосе между прямыми у = -1 и у = 1.

Слайд 4

Наумова Ирина Михайловна

Как использовать периодичность и четность при построении

Так как функция периодическая

Наумова Ирина Михайловна Как использовать периодичность и четность при построении Так как
с периодом 2π, то достаточно построить ее график на каком – нибудь промежутке длиной 2π, например на отрезке -π ≤ х ≤ π; тогда на промежутках, получаемых сдвигами выбранного отрезка на 2πn, n∈Z, график будет таким – же.

Функция y = cos x является четной. Поэтому ее график симметричен относительно оси OY. Для построения графика на отрезке -π ≤ х ≤ π достаточно построить его для 0 ≤ х ≤ π, а затем симметрично отразить относительно оси OY.

Слайд 5

Наумова Ирина Михайловна

Найдем несколько точек для построения графика на отрезке [0; π]

Наумова Ирина Михайловна Найдем несколько точек для построения графика на отрезке [0;
и отразим, полученную часть графика симметрично относительно оси OY.

Слайд 6

Наумова Ирина Михайловна

Распространим полученный график на всей числовой прямой с помощью сдвигов

Наумова Ирина Михайловна Распространим полученный график на всей числовой прямой с помощью
на 2π, 4π и т.д. вправо, на -2π, -4π и т.д. влево, т.е. вообще на 2πn, n∈Z.

Слайд 7

Наумова Ирина Михайловна

Итак, график функции y = cos x построен геометрически на

Наумова Ирина Михайловна Итак, график функции y = cos x построен геометрически
всей числовой прямой, начиная с построения его части на отрезке [0; π]. Поэтому свойства функции y = cos x можно получить , опираясь на свойства этой функции на отрезке [0; π]. Например, функция y = cos x возрастает на отрезке [-π; 0], так как она убывает на отрезке [0; π] и является четной. Перечислим основные свойства функции y = cos x.

Слайд 8

Наумова Ирина Михайловна

Для этого нужно вспомнить

Как найти область определения и множество значений

Наумова Ирина Михайловна Для этого нужно вспомнить Как найти область определения и
тригонометрических функций;
Какие функции называются периодическими и как найти период функции;
Какие функции называются четными (нечетными);
Когда функция возрастает (убывает);
Как найти нули функции;
Как определить на каких промежутках функция принимает положительные (отрицательные) значения;
Как определить когда функция принимает наибольшее (наименьшее) значения.

Слайд 9

Наумова Ирина Михайловна

Область определения

Каждому действительному числу х соответствует единственная точка единичной окружности,

Наумова Ирина Михайловна Область определения Каждому действительному числу х соответствует единственная точка
получаемая поворотом точки (1; 0) на угол х радиан. Для этого угла определены sin x и cos x. Тем самым каждому действительному числу х поставлены в соответствие числа sin x и cos x, т.е. на множестве R всех действительных чисел определены функции y = sin x и y = cos x.
Таким образом, областью определения функций y = sin x и y = cos x является множество R всех действительных чисел.

Слайд 10

Наумова Ирина Михайловна

Множество значений

Чтобы найти множество значений функции y = cos x,

Наумова Ирина Михайловна Множество значений Чтобы найти множество значений функции y =
нужно выяснить, какие значения может принимать y при различных значениях х, т.е. установить, для каких значений у есть такие значения х, при которых cos x = y. Известно, что уравнение cos x = a имеет корни, если |a| ≤ 1, и не имеет корней, если |a| > 1.
Следовательно множеством значений функции y = cos x является отрезок –1 ≤ у ≤ 1.

Слайд 11

Наумова Ирина Михайловна

Периодичность

Функция y = f (x) называется периодической, если существует такое

Наумова Ирина Михайловна Периодичность Функция y = f (x) называется периодической, если
число Т ≠ 0, что для любого х из ее области определения выполняется равенство f (x – T) = f (x) = f (x + T). Число Т называется периодом функции.
Известно, что для любого значения х верны равенства sin(x + 2π)=sin x, cos(x + 2π)= cos x. Из этих равенств следует, что значения синуса и косинуса периодически повторяются при изменении аргумента на 2π. Такие функции называются периодическими с периодом 2π.

Слайд 12

Наумова Ирина Михайловна

Четность, нечетность

Функция y = f (x) называется четной, если для

Наумова Ирина Михайловна Четность, нечетность Функция y = f (x) называется четной,
каждого значения х из ее области определения выполняется равенство f (-x) = f (x), график симметричен относительно оси ординат.
Функция y = f (x) называется нечетной, если для каждого значения х из ее области определения выполняется равенство f (-x) = -f (x), график симметричен относительно начала координат.

Слайд 13

Наумова Ирина Михайловна

Возрастание, убывание

Функция y = f(x) называется возрастающей, если наибольшему (наименьшему)

Наумова Ирина Михайловна Возрастание, убывание Функция y = f(x) называется возрастающей, если
значению функции соответствует наибольшее (наименьшее) значение аргумента. Т.е. если у1 > y2 (y1 < y2), то x1 > x2 (x1 < x2).
Функция y = f(x) называется убывающей, если наибольшему (наименьшему) значению функции соответствует наименьшее (наибольшее) значение аргумента. Т.е. если у1 > y2 (y1 < y2), то x1 < x2 (x1 > x2).

Слайд 14

Наумова Ирина Михайловна

Нули функции, положительные и отрицательные значения, наименьшее и наибольшее значения.

Наумова Ирина Михайловна Нули функции, положительные и отрицательные значения, наименьшее и наибольшее

Для того чтобы определить когда функция y = cos x принимает значения, равные:
нулю;
положительные;
отрицательные;
наименьшее;
наибольшее,

необходимо решить:
уравнение cos x = 0;
неравенство cos x > 0;
неравенство cos x < 0;
уравнение cos x = -1;
уравнение cos x = 1;

Слайд 15

Наумова Ирина Михайловна

Свойства функции y = cos x

Область определения: D(f): х ∈

Наумова Ирина Михайловна Свойства функции y = cos x Область определения: D(f):
R;
Множество значений: у ∈ [-1;1];
Периодичность: Т = 2π;
Четность: четная, т.к. cos(-x) = cos x, график симметричен относительно оси ординат;
Функция возрастает при: π+2πn ≤ x ≤ 2π(n+1), n∈Z;
Функция убывает при: πn ≤ x ≤ π + 2πn, n ∈ Z.

Слайд 16

Наумова Ирина Михайловна

Свойства функции y = cos x (продолжение)

Функция принимает значения:
Равные нулю

Наумова Ирина Михайловна Свойства функции y = cos x (продолжение) Функция принимает
при х=π/2+πn, n∈Z;
Положительные при -π/2+2πn < x < π/2+2πn, n∈Z;
Отрицательные при π/2+2πn < x < 3π/2+2πn, n∈Z;
Наибольшее, равное 1, при x = 2πn, n ∈ Z;
Наименьшее, равное –1, при x = π + 2πn, n ∈ Z.

Слайд 17

Наумова Ирина Михайловна

Преобразование графика функции y = cos x

Изменение функции
y = cos

Наумова Ирина Михайловна Преобразование графика функции y = cos x Изменение функции
x + A
y = k · cos x
y = - cos x
y = ⎜cos x ⎜

Изменение аргумента
y = cos (x – a)
y = cos (k · x)
y = cos (- x)
y = cos ⎢x ⎢

Слайд 18

Наумова Ирина Михайловна

y = cos x + A

Параллельный перенос графика функции у

Наумова Ирина Михайловна y = cos x + A Параллельный перенос графика
= соs x вдоль оси ординат на А единиц вверх, если А > 0 и на ⎢А ⎢ единиц вниз, если А < 0.
Например: y = cos x + 2; y = cos x – 1.

Слайд 19

Наумова Ирина Михайловна

y = cos x + A (свойства)

Изменяются множество значений функции;

Наумова Ирина Михайловна y = cos x + A (свойства) Изменяются множество
наибольшее (наименьшее) значения; нули функции; промежутки положительных (отрицательных) значений.
Например: y = cos x + 2.
E (f): cos x + 2 = a ⇒ cos x = a – 2, т.к. – 1 ≤ y ≤ 1, то –1 ≤ а – 2 ≤ 1 ⇒ 1 ≤ а ≤ 3, т.е. y ∈ [1; 3].
Нули функции: cos x + 2 = 0 ⇒ cos x = -2 данное уравнение не имеет корней т.к. |-2| > 1 ⇒ график данной функции не пересекает ось абсцисс.
f (x) > 0: при любом значении х.
f (x) < 0: нет.
y (наиб) = 3, при: x = 2πn, n ∈ Z (т.к. cos x + 2 = 3 ⇒ cos x = 1 ⇒ x = 2πn, n ∈Z).
y (наим) = 1, при: x = π + 2πn, n ∈Z (т.к. cos x + 2 = 1 ⇒ cos x = - 1 ⇒ x = π + 2πn, n ∈ Z).

Слайд 20

Наумова Ирина Михайловна

y = k · cos x

Растяжение графика функции у =

Наумова Ирина Михайловна y = k · cos x Растяжение графика функции
соs x вдоль оси ординат относительно оси абсцисс в k раз, если k > 0 и сжатие в 1/k раз, если 0 < k < 1.
Например: y = 3 • cos x; y = 0,5 • cos x.

Слайд 21

Наумова Ирина Михайловна

y = k · cos x (свойства)

Изменяется множество значений функции;

Наумова Ирина Михайловна y = k · cos x (свойства) Изменяется множество
наибольшее (наименьшее) значения.
Например: y = 3 • cos x
E (f): 3•cos x = a ⇒ cos x = a/3, т.к. – 1 ≤ y ≤ 1, то - 1 ≤ a/3 ≤ 1 ⇒ - 3 ≤ a ≤ 3, т.е. y ∈ [-3; 3].
Функция принимает наибольшее значение, равное 3, при: x = 2πn, n ∈ Z (т.к. 3cos x = 3 ⇒ cos x = 1 ⇒ x = 2πn, n ∈ Z).
Функция принимает наименьшее значение, равное – 3, при: x = π + 2πn, n ∈ Z (т.к. 3cos x = - 3 ⇒ cos x = - 1 ⇒ x = π + 2πn, n ∈ Z).

Слайд 22

Наумова Ирина Михайловна

y = - cos x

Симметричное отражение графика функции y =

Наумова Ирина Михайловна y = - cos x Симметричное отражение графика функции
cos x относительно оси абсцисс.

Слайд 23

Наумова Ирина Михайловна

y = - cos x (свойства)

Изменяются промежутки возрастания (убывания); промежутки

Наумова Ирина Михайловна y = - cos x (свойства) Изменяются промежутки возрастания
положительных (отрицательных) значений.
Функция возрастает на отрезке [0; π] и на отрезках, получаемых сдвигами этого отрезка на 2πn, n = ±1, ±2, ±3…
Функция убывает на отрезке [π; 2π] и на отрезках, получаемых сдвигами этого отрезка на 2πn, n = ±1, ±2, ±3…
Функция принимает положительные значения на интервале (π/2; 3π/2) и на интервалах, получаемых сдвигами этого интервала на 2πn, n = ±1, ±2…
Функция принимает отрицательные значения на интервале (- π/2; π/2) и на интервалах, получаемых сдвигами этого интервала на 2πn, n = ±1, ±2…

Слайд 24

Наумова Ирина Михайловна

y = | cos x |

Часть графика, расположенная ниже оси

Наумова Ирина Михайловна y = | cos x | Часть графика, расположенная
абсцисс симметрично отражается относительно этой оси, остальная его часть остается без изменения.

Слайд 25

Наумова Ирина Михайловна

y = |cos x| (свойства)

Изменяются: множество значений функции; период; промежутки

Наумова Ирина Михайловна y = |cos x| (свойства) Изменяются: множество значений функции;
возрастания (убывания); наибольшее (наименьшее) значение.
E (f): y ∈[ 0; 1]
Периодичность: Т = π
Функция возрастает на промежутке (π/2; π)+ сдвиги на πn, n∈Z
Функция убывает на промежутке (0; π/2) + сдвиги на πn, n∈Z
f (x) > 0: при любом значении х
f (x) < 0: нет
y (наиб) = 1, при х = 2πn, n∈Z
y (наим) = 0, при х = π/2 + πn, n∈Z

Слайд 26

Наумова Ирина Михайловна

y = cos (x – a)

Параллельный перенос графика функции y

Наумова Ирина Михайловна y = cos (x – a) Параллельный перенос графика
= cos x вдоль оси абсцисс на а единиц вправо, если а > 0, на ⎢а ⎢ единиц влево, если а < 0.
Например: y = cos ( x - π/2 ); y = cos ( x +π/4 ).

Слайд 27

Наумова Ирина Михайловна

y = cos (x – a) (свойства)

Изменяются: четность; промежутки возрастания

Наумова Ирина Михайловна y = cos (x – a) (свойства) Изменяются: четность;
(убывания); нули функции; промежутки положительных (отрицательных) значений.
Например: y = cos (x + π/4)
Четность: f (x) ≠ f (-x) ≠ -f (x), т.к. cos (-(x + π/4)) = cos (-x - π/4)
Функция возрастает на [ 3π/4; 11π/4] + сдвиги на 2πn, n∈Z
Функция убывает на [-π/4; 3π/4 ]+ сдвиги на 2πn, n∈Z
f (x) =0 при х = π/4 +πn, n∈Z
f (x) > 0 при х∈ (-3π/4; π/4) + сдвиги на 2πn, n∈Z
f( (x) <0 при х∈ (π/4; 5π/4) + сдвиги на 2πn, n∈Z

Слайд 28

Наумова Ирина Михайловна

y = cos ( k · x )

Сжатие графика функции

Наумова Ирина Михайловна y = cos ( k · x ) Сжатие
y = cos x вдоль оси абсцисс относительно оси ординат в k раз, если k > 1 , и растяжение в 1/k раз, если 0 < k < 1.
Например: y = cos 3x; y = cos 0,5x.

Слайд 29

Наумова Ирина Михайловна

y = cos ( k · x ) (свойства)

Изменяются: период;

Наумова Ирина Михайловна y = cos ( k · x ) (свойства)
промежутки возрастания (убывания); нули функции; промежутки положительных (отрицательных) значений.
Например: y = cos 3x
Период: Т = 2π/3, (т.к. наименьший положительный период функции y = cos x равен 2π, то 3Т = 2π ⇒ Т = 2π/3).
Функция возрастает на [π/3; 2π/3] + сдвиги на 2πn/3, n∈Z.
Функция убывает на [0; π/3] + сдвиги на 2πn/3, n∈Z.
f (x) = 0 при х = π/6 + πn/3.
f (x) > 0 при х∈ (-π/6; π/6) + сдвиги на 2πn/3, n ∈ Z.
f (x) < 0 при х∈ (π/6; π/2) + сдвиги на 2πn/3, n ∈ Z.

Слайд 30

Наумова Ирина Михайловна

y = cos ( - x )

Симметричное отражение относительно оси

Наумова Ирина Михайловна y = cos ( - x ) Симметричное отражение относительно оси абсцисс.
абсцисс.

Слайд 31

Наумова Ирина Михайловна

y = cos (-x) (свойства)

В данном случае свойства функции

Наумова Ирина Михайловна y = cos (-x) (свойства) В данном случае свойства
не меняются, так как функция y = cos x – четная и cos (-x) = cos (x) ⇒ все свойства функции y = cos x справедливы и для функции y = cos (-x)

Слайд 32

Наумова Ирина Михайловна

y = cos | x |

Часть графика, расположенная в области

Наумова Ирина Михайловна y = cos | x | Часть графика, расположенная
х ≥ 0, остается без изменения, а его часть для области х ≤ 0 заменяется симметричным отображением относительно оси ординат части графика для х ≥ 0.

Слайд 33

Наумова Ирина Михайловна

y = cos|x| (свойства)

В данном случае свойства функции не

Наумова Ирина Михайловна y = cos|x| (свойства) В данном случае свойства функции
меняются, так как функция y = cos x – четная и cos |x| = cos (-x) = cos (x) ⇒ все свойства функции y = cos x справедливы и для функции y = cos |x|

Слайд 34

Наумова Ирина Михайловна

y = 3 · cos x – 2

Построить график

Наумова Ирина Михайловна y = 3 · cos x – 2 Построить
функции y = 3•cos x –2 (параллельный перенос графика y = 3•cos x вдоль оси OY на 2 единицы вниз).

Построить график функции y = cos x;
Построить график функции y = 3•cos x (растяжение графика функции y = cos x вдоль оси OY в 3 раза);

Слайд 35

Наумова Ирина Михайловна

Свойства функции y = 3 · cos x – 2

Наумова Ирина Михайловна Свойства функции y = 3 · cos x –

Область определения: D(f): х ∈ R;
Множество значений: y ∈ [- 5; 1], т.к. –1 ≤ cos x ≤ 1 ⇒ - 3 ≤ 3cos x ≤ 3 ⇒ - 5 ≤ 3cos x – 2 ≤ 1;
Периодичность: Т = 2π;
Четность: четная, т.к. 3сos (-x) –2 = 3cos x – 2 ⇒ график функции симметричен относительно оси OY;
Возрастает: на отрезке [π; 2π] и на отрезках, получаемых сдвигами этого отрезка на 2πn, n = ±1, ±2; ±3…;
Убывает: на отрезке [0; π] и на отрезках, получаемых сдвигами этого отрезка на 2πn, n = ±1, ±2, ±3…

Слайд 36

Наумова Ирина Михайловна

y = 3 – 2 · cos (x + π/2)

Построим

Наумова Ирина Михайловна y = 3 – 2 · cos (x +
график функции y = cos x;
Построим график функции y = cos (x + π/2)(параллельный перенос графика функции y = cos x вдоль оси абсцисс на π/2 единиц влево);
Построим график функции y = 2cos(x + π/2)(растяжение графика функции y = cos(x + π/2) вдоль оси OY в 2 раза);
Построим график функции y = - 2cos(x + π/2)(симметричное отражение графика функции y = 2cos (x + π/2) относительно оси OX);
Построим график функции y = 3 – 2cos (x + π/2) (параллельный перенос графика функции y = - 2cos (x + π/2) вдоль оси OY на 3 единицы вверх).
Имя файла: Презентация-на-тему-Функция-y-=-cos-x.-Ее-свойства-и-график-.pptx
Количество просмотров: 680
Количество скачиваний: 2