- Главная
- Математика
- Решение линейных систем уравнений способом подстановки

Содержание
Слайд 213.05 Классная работа
Решение линейных систем уравнений способом подстановки.
№696(б)
х +5у = 0
13.05 Классная работа
Решение линейных систем уравнений способом подстановки.
№696(б)
х +5у = 0

⬄ (выразим из первого уравнения Х через У.
3х + 7у – 16 = 0 т.к. коэффициент перед Х равен 1 (выразить Х через У, значит Х оставить с лево, а все остальное перенести в право))
х = - 5у ⬄ (подставим -5у во второе уравнение
3х + 7у - 16 = 0 вместо Х)
х= - 5у
3*(- 5у) + 7у – 16 = 0
3х + 7у – 16 = 0 т.к. коэффициент перед Х равен 1 (выразить Х через У, значит Х оставить с лево, а все остальное перенести в право))
х = - 5у ⬄ (подставим -5у во второе уравнение
3х + 7у - 16 = 0 вместо Х)
х= - 5у
3*(- 5у) + 7у – 16 = 0
Слайд 3Решим второе уравнение: - 15у + 7у – 16 = 0
неизвестные влево,
Решим второе уравнение: - 15у + 7у – 16 = 0
неизвестные влево,

известные вправо: - 15у + 7у = 16
(если слагаемое переносим из одной части в другую, то меняем его знак на противоположный)
Считаем сколько с лево, сколько с право: - 8у = 16
Делим обе части на коэффициент перед неизвестным:
у = 16 : (-8)
у = - 2
Подставим значение У в первое уравнения
х = -5* (- 2) ⬄ х = 10
у = - 2 у = - 2
Проверка: 10 + 5*(- 2)= 0 ⬄ 10 – 10 =0 ⬄ 0=0
3*10 + 7*(- 2) – 16 =0 30 – 14 – 16 =0 0=0
Ответ: (10; - 2) (всегда на первом месте пишем значение Х. на втором значение У)
(если слагаемое переносим из одной части в другую, то меняем его знак на противоположный)
Считаем сколько с лево, сколько с право: - 8у = 16
Делим обе части на коэффициент перед неизвестным:
у = 16 : (-8)
у = - 2
Подставим значение У в первое уравнения
х = -5* (- 2) ⬄ х = 10
у = - 2 у = - 2
Проверка: 10 + 5*(- 2)= 0 ⬄ 10 – 10 =0 ⬄ 0=0
3*10 + 7*(- 2) – 16 =0 30 – 14 – 16 =0 0=0
Ответ: (10; - 2) (всегда на первом месте пишем значение Х. на втором значение У)
Слайд 4№696(г)
7х – у = 0 ⬄ у =7х ⬄ у =
№696(г)
7х – у = 0 ⬄ у =7х ⬄ у =

7х
3х – у + 12 = 0 3х – у + 12 = 0 3х – 7х +12 = 0
3х - 7 х +12 = 0
3х - 7 х = - 12
- 4х = - 12
х = - 12: (- 4)
х = 3
у = 7х ⬄ у = 7*3 ⬄ у = 21
х = 3 х= 3 х= 3
Проверка: 7*3 – 21 = 0 ⬄ 0=0
3*3 – 21 + 12 = 0 0=0
Ответ: (3; 21)
3х – у + 12 = 0 3х – у + 12 = 0 3х – 7х +12 = 0
3х - 7 х +12 = 0
3х - 7 х = - 12
- 4х = - 12
х = - 12: (- 4)
х = 3
у = 7х ⬄ у = 7*3 ⬄ у = 21
х = 3 х= 3 х= 3
Проверка: 7*3 – 21 = 0 ⬄ 0=0
3*3 – 21 + 12 = 0 0=0
Ответ: (3; 21)
Слайд 5Домашнее задание
№696(а,в)
Домашнее задание
№696(а,в)

- Предыдущая
Российский паспорт Штыренко Алины АлексеевныСледующая -
Medical Protozoology
Решение текстовых задач
Логарифмическая функция
Прямая АМ перпендикулярна к плоскости квадрата АВСD. урок 29
В стране смекалки. Викторина
Откроем для себя мир загадок нашей планеты!
Оценка вероятности поражения крупных объектов. Лекция № 18
Откуда к нам пришли отрицательные числа? Сказка бабушки Тортилы
Логарифмическая линейка
Презентация на тему Решение задач с помощью квадратных уравнений
Координатный луч (2)
Уравнение окружности. Уравнение прямой. Задачи на чертежах. 9 класс
Дроби. Математические гонки
Диагностическая работа (1 класс)
Преобразование буквенных выражений
Подготовка к СР по теме Способ сложения при решений систем уравнений
Пропорциональные отрезки в прямоугольном треугольнике
Лекция_05
Неопределенные интегралы
Приведение дробей к общему знаменателю
ОГЭ 2022 Математика. Вариант 15
Квадратные уравнения. Полное не приведенное и приведенное уравнения
Презентация на тему Арифметическая и геометрическая прогрессии в заданиях ГИА
Тригонометрические уравнения
Свидетели истории народа
Квадратное уравнение и его корни. Решение полных квадратных уравнений
Устная нумерация чисел от 1 до 20
К В Н 8 – 9 классы «И прекрасна, и сильна Математика – страна»
Корень степени