Сглаживание и экстраполяция

Содержание

Слайд 2

Экстраполяция

Экстраполяция – распространение выводов, касающихся одной части какого-либо явления, на другую

Экстраполяция Экстраполяция – распространение выводов, касающихся одной части какого-либо явления, на другую
часть, на явление в целом на будущее.
Цель методов экстраполяции – показать, к какому состоянию в будущем может прийти объект, если его развитие будет осуществляться с той же скоростью или ускорением, что и в прошлом.

Слайд 3

Расчет прогноза по среднему уровню ряда

Динамический ряд не имеет тенденции роста,

Расчет прогноза по среднему уровню ряда Динамический ряд не имеет тенденции роста,
снижения,
Колебания относительно невелики
где yi - элемент динамического ряда с индексом i;
п - число показателей динамического ряда.

Слайд 4

Расчет прогноза по средним темпам роста (снижения)

Динамическому ряду свойственна устойчивая тенденция к

Расчет прогноза по средним темпам роста (снижения) Динамическому ряду свойственна устойчивая тенденция
повышению или снижению.
Средний коэффициент темпов роста (снижения)
где уп- конечный показатель динамического ряда;
у1 - начальный показатель динамического ряда;
п — количество показателей динамического ряда

Слайд 5

Расчет прогноза по средним темпам роста (снижения)

где к - время упреждения прогноза (число прогнозируемых

Расчет прогноза по средним темпам роста (снижения) где к - время упреждения
интервалов времени)
уп- конечный показатель динамического ряда
Кр - средний коэффициент темпов роста (снижения)

Слайд 6

Расчет прогноза путем выравнивания (сглаживания) динамического ряда

При наличии устойчивой тенденции роста

Расчет прогноза путем выравнивания (сглаживания) динамического ряда При наличии устойчивой тенденции роста
или снижения показателей динамического ряда
у - значение показателей динамического ряда; 
упр - прогнозный показатель; 
t - порядковый номер показателя динамического ряда (время, например год, месяц и т. д.); 
t1, t2 - начало и конец динамического ряда; 
tn - порядковый номер прогнозного показателя; 
К - время упреждения прогноза

Слайд 7

Экспертные методы прогнозирования

Преимущества: возможность максимального использования индивидуальных способностей эксперта и незначительность психологического

Экспертные методы прогнозирования Преимущества: возможность максимального использования индивидуальных способностей эксперта и незначительность
давления, оказываемого на отдельного работника.
Принцип выявления коллективного мнения экспертов о перспективах развития объекта прогнозирования.

Слайд 8

Прогнозные экспертные методы

Метод комиссий.
Метод «лицом к лицу».
Процедура дельфи.
Морфологический анализ.
«Мозговая атака».
Метод фокальных объектов.
Метод

Прогнозные экспертные методы Метод комиссий. Метод «лицом к лицу». Процедура дельфи. Морфологический
контрольных вопросов

Слайд 9

Методы экспоненциального сглаживания

Методы экспоненциального сглаживания основываются на прогнозировании будущего по данным из

Методы экспоненциального сглаживания Методы экспоненциального сглаживания основываются на прогнозировании будущего по данным
прошлого, где более новые наблюдения весят больше, чем старые.
P(t+1) = (1 – k)* P(t) + α * С(t)
Pt+1 – прогноз на следующий период t+1;
Pt – данные для прогноза за текущий период t;
k - коэффициент сглаживания ряда, k задается вручную и находится в диапазоне от 0 до 1, 0Ct – значение прогноза на текущий период t.

Слайд 10

k=0.2, степень экспоненциального сглажи-вания высокая, реальные данные учитываются слабо

k=0.2, степень экспоненциального сглажи-вания высокая, реальные данные учитываются слабо

Слайд 11

k=0.4, степень экспоненциального сглаживания средняя, реальные данные учитываются в средней степени.

k=0.4, степень экспоненциального сглаживания средняя, реальные данные учитываются в средней степени.

Слайд 12

k=0.6, степень экспоненциального сглаживания низкая, реальные данные учитываются значительно

k=0.6, степень экспоненциального сглаживания низкая, реальные данные учитываются значительно

Слайд 13

k=0.8, степень экспоненциального сглаживания крайне низкая, реальные данные учитываются сильно

k=0.8, степень экспоненциального сглаживания крайне низкая, реальные данные учитываются сильно
Имя файла: Сглаживание-и-экстраполяция.pptx
Количество просмотров: 60
Количество скачиваний: 1