Скрещивающиеся прямые

Содержание

Слайд 2

Две прямые называются скрещивающимися, если они не лежат в одной плоскости.

Определение

М

a

b

Две прямые называются скрещивающимися, если они не лежат в одной плоскости. Определение М a b

Слайд 3

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIi

Наглядное представление о скрещивающихся прямых дают две дороги, одна из которых проходит

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIi Наглядное представление о скрещивающихся прямых дают две дороги, одна из которых
по эстакаде, а другая под эстакадой.

Слайд 5

Найдите на рисунке параллельные прямые.
Назовите параллельные прямые и плоскости.
Найдите скрещивающиеся прямые.

Найдите на рисунке параллельные прямые. Назовите параллельные прямые и плоскости. Найдите скрещивающиеся прямые.

Слайд 6

Если одна из двух прямых лежит в некоторой плоскости, а другая прямая

Если одна из двух прямых лежит в некоторой плоскости, а другая прямая
пересекает эту плоскость в точке, не лежащей на первой прямой, то эти прямые скрещивающиеся.

Признак скрещивающихся прямых

D

В

А

C

Доказать:

Слайд 7

а II b

Три случая взаимного расположения двух прямых в пространстве

М

a

b

a

b

a

b

а II b Три случая взаимного расположения двух прямых в пространстве М

Слайд 8

А

D

С

В

B1

С1

D1

А1

Каково взаимное положение прямых
1) AD1 и МN; 2) AD1 и ВС1; 3)

А D С В B1 С1 D1 А1 Каково взаимное положение прямых
МN и DC?

N

M

Слайд 9

А

D

С

В

B1

С1

D1

А1

Докажите, что прямые
1) AD и C1D1; 2) A1D и D1C; 3)

А D С В B1 С1 D1 А1 Докажите, что прямые 1)
AB1 и D1C скрещивающиеся.

N

M

Слайд 10

А

D

С

В

B1

С1

D1

А1

Основание призмы АВСDA1B1C1D1 – трапеция.
Какие из следующих пар прямых являются
скрещивающимися?
1)

А D С В B1 С1 D1 А1 Основание призмы АВСDA1B1C1D1 –
D1C и C1D; 2) C1D и AB1; 3) C1D и AB; 4) AB и CD.

Слайд 11

Через каждую из двух скрещивающихся прямых проходит плоскость, параллельная другой прямой, и

Через каждую из двух скрещивающихся прямых проходит плоскость, параллельная другой прямой, и
притом только одна.

Теорема о скрещивающихся прямых

D

С

B

A

Имя файла: Скрещивающиеся-прямые.pptx
Количество просмотров: 29
Количество скачиваний: 0