Приближенное вычисление корня уравнения методом деления отрезка пополам
Вычисления корня уравнения f(x)=0 Вычисления на компьютере обладают большей гибкостью, чем привычные всем вычисления в математике. Рассмотрим для примера задачу вычисления корня уравнения f(x) = 0. В курсе школьной математики вам известен метод дискриминанта для уравнений вида:
ax2 + bx + c = 0, выражаемой по формуле . Однако, во многих случаях, ответ не выражается формулой (например, для корня уравнения cos(x) = x формулы просто нет). Но можно, не выводя точных формул, вычислить корень приближенно, с заданной точностью, например, до 0,0001. Мы рассмотрим один из приближенных методов вычисления корня уравнения – метод деления отрезка пополам. Постановка задачи Дано уравнение f(x) = 0 и числа a и b: a < b, f(a) и f(b) имеют разные знаки на отрезке [a, b], т.е. f(a)* f(b) 0. Если V–точный корень уравнения f(V) = 0, a < V < b, то требуется найти W: |W – V| < E, a < W < b.