Презентации, проекты, доклады в PowerPoint на любую тему

Презентация на тему Преобразование графиков функций
Презентация на тему Преобразование графиков функций
Основные правила преобразования графиков функций 1. У = - f(x) ← y = f(x) , отображением относительно оси ОХ. 2. У = f(- x) ← y = f(x), отображением от оси ОУ. 3. У = - f (- x) ← y = f(x), отображением относительно начала координат. 4. У = f(x – a) ← y = f(x),параллельным переносом вправо по ОХ, если а >0, влево по ОХ, если а < 0. 5. У = f(x) + b ← y = f(x), параллельным переносом вверх по ОУ, если в > 0, вниз по ОУ, если в < 0. 6. У = f(kx) ← y = f(x), растяжением в вдоль оси ОХ в 1/к раз, если 0 < к < 1; сжатием вдоль оси ОХ в к раз, если к > 1. 7. У = kf(x) ← y = f(x), сжатием вдоль оси ОУ в 1/к раз, если 0 < к < 1 и растяжением вдоль оси ОУ в к раз, если к > 1. 9. У = f(Ix I) ← y = f(x) строим график функции y = f(x) при х ≥ 0 и отображением его относительно оси ОУ. 8. У = If(x)I – совпадает с у = f(x) в тех точках, которые лежат выше оси ОХ симметричен графику у = f(x) относительно оси абсцисс в остальных точках. х у 0 У = f(x) Y = - f(x)
Продолжить чтение
Презентация на тему Пределы. Непрерывность функций
Презентация на тему Пределы. Непрерывность функций
Введение Цель работы: 1. Совершенствовать уровень своей математической подготовки. 2. Овладеть некоторыми вопросами математического анализа. Задачи исследования: 1. Изучить определения и свойства предела, непрерывность функции. 2. Выработать навыки нахождения пределов, построения графи-ков разрывных функций. Актуальность темы: Изучение данной темы предусматривает межпредметную связь математики и физики. Понятие предела непосредственно связано с ос-новными понятиями математического анализа – производная, инте-грал и др. Предел переменной величины Пределом переменной величины х называется постоянное число а, если для каждого наперед заданного произвольно малого положи-тельного числа ε можно указать такое значение переменной х, что все последующие значения будут удовлетворять неравенству |х–а|
Продолжить чтение