Кластерный анализ и информационный поиск

Содержание

Слайд 2

© ElVisti

Понятие «кластерного анализа»

Пример кластеров сайтов - «групп подобия по контенту»
(www

© ElVisti Понятие «кластерного анализа» Пример кластеров сайтов - «групп подобия по
touchgraph.com)

Кластерный анализ - метод группировки экспериментальных данных в классы. Наблюдения, попавшие в один класс, в некотором смысле ближе друг к другу, чем к наблюдениям из других классов. (Глоссарий.ru)

Слайд 3

© ElVisti

Понятие информационного портрета

Портрет - модель реального объекта, выраженную его наиболее

© ElVisti Понятие информационного портрета Портрет - модель реального объекта, выраженную его
узнаваемыми чертами.
Информационный портрет документа - статистически значимая совокупность информационных характеристик.
В качестве информационного портрета темы можно рассматривать множество ключевых слов, наиболее точно (по статистическим и смысловым алгоритмам) отражающее информацию, соответствующую данной теме.
Тематической рубрике соответствует ее информационный портрет:
Pi = { vij}, (j=1,..,K),
где vij –весовой коэффициент, соответствующий j-му терм, K - количество термов в словаре системы.

Слайд 4

© ElVisti

Взвешивание потока документов в пространстве информационного портрета

М = {mij} (i

© ElVisti Взвешивание потока документов в пространстве информационного портрета М = {mij}
= 1,..,N; j = 1,..,K) - матрица соответствия потока документов D информационному портрету l.
D={di} {i=1,K}. di – определяется как TF*IDF.
Близость D и Pi – sim(D, Pi) – скалярное произведение K-мерных векторов.
Алгоритм взвешивания:

Слайд 5

© ElVisti

Латентное семантическое индексирование

Метод кластерного анализа LSI (латентного семантического индексирования), базируется

© ElVisti Латентное семантическое индексирование Метод кластерного анализа LSI (латентного семантического индексирования),
на сингулярном разложении матриц (SVD). Сингулярным разложением матрицы A называется ее разложение вида A=USVT, где U и V – ортогональные матрицы, а S – диагональная матрица, элементы которой sij = 0, если i не равно j, а siі >= 0. В рассматриваемом примере (таблиц взаимосвязей) матрица А = МT М – квадратная, однако метод LSI применяется и к прямоугольным матрицам, но в этих случаях размерность матрицы S соответствует рангу матрицы А.
В соответствии с методом LSI в рассмотрение берутся k наибольших сингулярных значений, а каждому такому сингулярному значению матрицы А соответствует кластер взаимосвязанных документов. А аппроксимируется матрицей Ak = Σ ui sii viT.
Метод LSI применим и к ранжированию выдачи информационно-поисковых систем, основанному на цитировании. Это алгоритм HITS (Hyperlink Induced Topic Search) – один из двух самых популярных на сегодня в области информационного поиска.
Ввиду своей вычислительной трудоемкости (равной O(N2), N –
размерность А), этот метод LSI применяется только для относительно небольших матриц.

Слайд 6

© ElVisti

Взаимосвязь тем и метод k-means

Суть алгоритма k-means: случайным образом выбирается

© ElVisti Взаимосвязь тем и метод k-means Суть алгоритма k-means: случайным образом
k векторов-строк, которые определяются как центроиды кластеров. Затем k кластеров наполняются – для каждого из оставшихся векторов-строк определяется близость к центроиду соответствующего кластера. После этого вектор-строка приписывается к тому кластеру, к которому он наиболее близок.
После этого строки-векторы перегруппируются. Затем для каждого из новых кластеров заново определяется центроид. После этого заново выполняется процесс наполнения кластеров и т. д., пока процесс не стабилизируется или не зациклится.

Слайд 7

© ElVisti

Группировка тем метод k-means

В отличие от метода LSI, k-means

© ElVisti Группировка тем метод k-means В отличие от метода LSI, k-means
идеально подходит для кластеризации динамических информационных потоков.
Укрупнение рубрик – актуальная задача кластерного анализа и она может быть решена путем их группировки по признакам подобия.
Выделение групп взаимосвязанных рубрик методом кластерного анализа k-means:

Слайд 8

© ElVisti

Метод, основанный на применении
сетевого подхода - выявление сюжетов

© ElVisti Метод, основанный на применении сетевого подхода - выявление сюжетов

Слайд 9

© ElVisti

Построение адаптивных
интерфейсов уточнения запросов

© ElVisti Построение адаптивных интерфейсов уточнения запросов
Имя файла: Кластерный-анализ-и-информационный-поиск.pptx
Количество просмотров: 161
Количество скачиваний: 0