Одночлены и многочлены

Содержание

Слайд 2

Устные упражнения

Устные упражнения

Слайд 3

Упростите:

с4 ⋅ с2; (с3)4;
с9 : с4; с7 ⋅ с3 ⋅

Упростите: с4 ⋅ с2; (с3)4; с9 : с4; с7 ⋅ с3 ⋅
с;
с8 : с5; с9 ⋅ с2;
(с5)2; (с2)6 ⋅ с.

Слайд 4

Слово «алгебра» произошло от слова «ал – джабра», взятого из названия книги

Слово «алгебра» произошло от слова «ал – джабра», взятого из названия книги
узбекского математика, астронома и географа Мухамеда ал – Хорезми «Краткая книга об исчислениях ал – джабры и ал – мукабалы». Выполнив «цепочку» вычислений, вы узнаете, какое из «исчислений» («ал – джабра» или «ал – мукабала») означает «приведение подобных членов».

Слайд 5

Вычислите:

+ - ⋅ + :

:

+ - ⋅ + -


-

-

Вычислите: + - ⋅ + : : + - ⋅ + -
10

- 11

7

5

3

- 13

8

12

15

4

29

13 – «ал – джабра»; 7 – «ал – мукалаба»

Слайд 6

Среди предложенных заданий найдите «лишнее»:

1. а5 ⋅ (3а – 4); 2. 3с

Среди предложенных заданий найдите «лишнее»: 1. а5 ⋅ (3а – 4); 2.
⋅ (с2 + 2с – 7); 3. 9у – (х – 9у); 4. (3х – 6) ⋅ 2х3.

Слайд 7

Среди предложенных заданий найдите «лишнее»:

1. 8 – (8х + 7); 2. 7с

Среди предложенных заданий найдите «лишнее»: 1. 8 – (8х + 7); 2.
⋅ (с2 + 1); 3. 5а + (11 – а); 4. (6у + 2) – 6у.

Слайд 8

Замените «М» многочленом так, чтобы полученное равенство было верным:

а) 5а + М

Замените «М» многочленом так, чтобы полученное равенство было верным: а) 5а +
= 5а + 3b – 8;
б) b2 – bc + М = b2 – bc + 7b – 5;
в) М + (2а2 + 4аb – b2) = 3а2 + 4аb.

Слайд 9

Замените «М» одночленом так, чтобы полученное равенство было верным:

а) М ⋅ (а

Замените «М» одночленом так, чтобы полученное равенство было верным: а) М ⋅
– b) = 4ac – 4bc;
б) М ⋅ (3а – 1) = 12а3 – 4а2;
в) М ⋅ (2а – b) = 10а2 – 5аb.

Слайд 10

Теоретический тест

Теоретический тест

Слайд 11

Верно ли утверждение, определение, свойство?

1. Одночленом называется сумма числовых и буквенных множителей.
2.

Верно ли утверждение, определение, свойство? 1. Одночленом называется сумма числовых и буквенных
Множители, записанные с помощью чисел, называются числовыми.
3. Буквенные множители – это множители, обозначенные цифрами.
4. Одночлены, в которых содержится только один числовой множитель и степени с различными буквенными основаниями, называют одночленами стандартного вида.

Слайд 12

Верно ли утверждение, определение, свойство?

5. Буквенный множитель одночлена, записанного в стандартном виде,

Верно ли утверждение, определение, свойство? 5. Буквенный множитель одночлена, записанного в стандартном
называют коэффициентом одночлена.
6. Чтобы записать одночлен в стандартном виде, надо перемножить все числовые множители и записать произведение на первом месте, а частное степеней с одинаковыми основаниями записать в виде степени.

Слайд 13

Верно ли утверждение, определение, свойство?

7. Одночлены, которые отличаются друг от друга только

Верно ли утверждение, определение, свойство? 7. Одночлены, которые отличаются друг от друга
коэффициентами, называются подобными членами.
8. Алгебраическая сумма нескольких одночленов называется многочленом.
9. В результате умножения многочлена на одночлен получается одночлен.

Слайд 14

Верно ли утверждение, определение, свойство?

10. При умножении одночлена на одночлен получается одночлен.
11.

Верно ли утверждение, определение, свойство? 10. При умножении одночлена на одночлен получается
В результате умножения многочлена на многочлен получается многочлен.
12. Многочлен, все члены которого записаны в стандартном виде, называется многочленом стандартного вида.

Слайд 15

Верно ли утверждение, определение, свойство?

13. Чтобы привести подобные члены, надо сложить коэффициенты

Верно ли утверждение, определение, свойство? 13. Чтобы привести подобные члены, надо сложить
и разделить на общий буквенный множитель.
14. Чтобы записать алгебраическую сумму нескольких многочленов в виде многочлена стандартного вида, надо раскрыть скобки и привести подобные члены.

Слайд 16

Верно ли утверждение, определение, свойство?

15. Чтобы раскрыть скобки, перед которыми стоит знак

Верно ли утверждение, определение, свойство? 15. Чтобы раскрыть скобки, перед которыми стоит
«+», скобки надо опустить, сохранив знак каждого члена, который был заключен в скобки.
16. Когда раскрываем скобки, перед которыми стоит знак «-», скобки опускаем и знаки членов, которые были заключены в скобки, изменяем на противоположные.

Слайд 17

Тренировочный практический тест по теме «Действия над одночленами и многочленами»

Тренировочный практический тест по теме «Действия над одночленами и многочленами»

Слайд 18

Тренировочный практический тест

1. Среди следующих одночленов укажите подобные: 1) 9ас; 2) –

Тренировочный практический тест 1. Среди следующих одночленов укажите подобные: 1) 9ас; 2)
17; 3) 9ху; 4) – 17ас. А. 1 и 3. Б. 1 и 3, 2 и 4. В. 1 и 4.
2. Какие из выражений не являются многочленами? 1) 3а + b; 2) 7а2 + b + 3; 3) 7а2 ⋅ b ⋅ 3. А. 1 и 2. Б. 3. В. 2 и 3.

Слайд 19

Тренировочный практический тест

3. Запишите многочлен в стандартном виде а3 ⋅ а5 –

Тренировочный практический тест 3. Запишите многочлен в стандартном виде а3 ⋅ а5
3а ⋅ а ⋅ а ⋅ 0,5 + 7а2. А. а8 – 3,5а3 + 7а2. Б. а15 – 1,5а3 + 7а2. В. а8 – 1,5а3 + 7а2.
4. Упростите, раскрыв скобки: 11 + (7а – 11). А. 22 + 7а. Б. 7а. В. – 7а + 22.

Слайд 20

Тренировочный практический тест

5. Упростите: 9а – (3 – 5а). А. 14а –

Тренировочный практический тест 5. Упростите: 9а – (3 – 5а). А. 14а
3. Б. 4а + 3. В. 4а – 3.
6. Выполните умножение: 5(а + 1). А. 5а + 1. Б. 5а. В. 5а + 5.
7. Выполните умножение: 3а2(7 – а). А. 21а2 – 3а2. Б. 21а2 - 3а3. В. – 21а3.

Слайд 21

Проверочный тест по теме «Действия над одночленами и многочленами»

Проверочный тест по теме «Действия над одночленами и многочленами»

Слайд 22

Проверочный тест

Вариант 1 1. Среди следующих одночленов укажите подобные: 1) 3ху; 2)

Проверочный тест Вариант 1 1. Среди следующих одночленов укажите подобные: 1) 3ху;
3а; 3) – 7ху; 4) – 7. А. 1 и 2. Б. 1 и 3. В. 1 и 2, 3 и 4. Вариант 2 1. Среди следующих одночленов укажите подобные: 1) 5ху; 2) – 9; 3) 5ас; 4) – 9ху. А. 1 и 3. Б. 1 и 3, 2 и 4. В. 1 и 4.

Слайд 23

Проверочный тест

Вариант 1 2. Какие из перечисленных выражений являются многочленами? 1) 5х

Проверочный тест Вариант 1 2. Какие из перечисленных выражений являются многочленами? 1)
+ у3; 2) 5ху3; 3) 5 + х + у3. А. 3. Б. 2. В. 1 и 3. Вариант 2 2. Какие из перечисленных выражений являются многочленами? 1) 4 + 3у – у2; 2) х2; 3) 7 – х; 4) а + с. А. 2 и 3. Б. 1 и 3. В. 1, 3 и 4.

Слайд 24

Проверочный тест

Вариант 1 3. Упростите выражение (а2 ⋅ а3)3. А. а8. Б.

Проверочный тест Вариант 1 3. Упростите выражение (а2 ⋅ а3)3. А. а8.
а18. В. а15. Вариант 2 3. Упростите выражение а3 ⋅ (3а3)2. А. 9а8. Б. 6а9. В. 9а9.

Слайд 25

Проверочный тест

Вариант 1 4. Приведите многочлен к стандартному виду: 4 ⋅ х

Проверочный тест Вариант 1 4. Приведите многочлен к стандартному виду: 4 ⋅
⋅ х ⋅ х ⋅ 2 – 6х5 + х3 ⋅ х4. А. 4х3 ⋅ 2 – 6х5 + х7. Б. 8х3 – 6х5 + х12. В. х7 – 6х5 + 8х3. Вариант 2 4. Приведите многочлен к стандартному виду: 6 ⋅ а ⋅ а ⋅ а ⋅ а ⋅ 1,5 + 0,4 ⋅ а3 ⋅ 5 – а6 ⋅ а3. А. 9а4 + 2а3 – а18. Б. – а9 + 9а4 + 20а3. В. – а9 + 9а4 + 2а3.

Слайд 26

Проверочный тест

Вариант 1 5. Упростите: (9а – 2b) – (5а – 3b).

Проверочный тест Вариант 1 5. Упростите: (9а – 2b) – (5а –
А. 4а + 5b. Б. 4а + b. В. 9аb. Вариант 2 5. Упростите: (7х – 3у) – (8у – 6х). А. х – 11у. Б. 13х – 11у. В. х + 5у.

Слайд 27

Проверочный тест

Вариант 1 6. В виде какого многочлена можно записать выражение 2а(а2

Проверочный тест Вариант 1 6. В виде какого многочлена можно записать выражение
+ а + 1)? А. 2а3 + а + 1. Б. 2а3 + 2а2 + 2а. В. 2а3 + 2а + 2. Вариант 2 6. В виде какого многочлена можно записать выражение 0,5х4(6х5 + х3 – 3)? А. 3х9 + х7 – 1,5х4; Б. 3х9 + 0,5х7 – 1,5х4; В. 3х9 + х3 – 3.
Имя файла: Одночлены-и-многочлены.pptx
Количество просмотров: 473
Количество скачиваний: 1