- Главная
- Разное
- Презентация на тему Второе и третье начала термодинамики.Тепловые двигатели и холодильные машины
Содержание
- 2. Первое начало термодинамики, выражая закон сохранения и превращения энергии, не позволяет установить направление протекания термодинамических процессов.
- 3. Можно дать более краткую формулировку второго начала термодинамики: в процессах, происходящих в замкнутой системе, энтропия не
- 4. Можно довольно просто доказать (предоставим это читателю) эквивалентность формулировок Кельвина и Клаузиуса. Кроме того, показано, что
- 5. Они дополняются третьим началом термодинамика, или теоремой Нернста* — Планка: энтропия всех тел в состоянии равновесия
- 6. Чтобы термический коэффициент полезного действия теплового двигателя ( ) был равен 1, необходимо выполнение условия Q2
- 7. Для кругового процесса, согласно (56.1), Q=A, но, по условию, Q = Q2 – Q1 Однако второе
- 8. Карно теоретически проанализировал обратимый наиболее экономичный цикл, состоящий из двух изотерм и двух адиабат. Его называют
- 9. Количество теплоты Q2, отданное газом холодильнику при изотермическом сжатии, равно работе сжатия А34: (2) Работа адиабатического
- 10. т. е. для цикла Карно к. п. д. действительно определяется только температурами нагревателя и холодильника. Для
- 11. dl Если ток со временем возрастает, то — >0 и ξ i dt направлен навстречу току,
- 12. dФ21 dl1 ξS= —— = -L21— dt dt Анологично, при протекании в контуре 2 тока I2
- 14. Скачать презентацию
Слайд 2
Первое начало термодинамики, выражая закон сохранения и превращения энергии, не позволяет
Первое начало термодинамики, выражая закон сохранения и превращения энергии, не позволяет
Используя понятие энтропии и неравенство Клаузиуса ( Для выяснения физического содержания этого понятия рассматривают отношение теплоты Q, полученной телом в изотермическом процессе, к температуре Т теплоотдающего тела, называемое приведенным количеством теплоты.
Приведенное количество теплоты, сообщаемое телу на бесконечно малом участке процесса, равно δQ/T. Строгий теоретический анализ показывает, что приведенное количество теплоты, сообщаемое телу в любом обратимом круговом процессе, равно нулю:
второе начало термодинамики можно сформулировать как закон возрастания энтропии замкнутой системы при необратимых процессах: любой необратимый процесс в замкнутой системе происходит так, что энтропия системы при этом возрастает.
Слайд 3
Можно дать более краткую формулировку второго начала термодинамики: в процессах, происходящих
Можно дать более краткую формулировку второго начала термодинамики: в процессах, происходящих
Формула Больцмана ( где k- постоянная Больцмана ) позволяет объяснить постулируемое вторым началом термодинамики возрастание энтропии в замкнутой системе при необратимых процессах: возрастание энтропии означает переход системы из менее вероятных в более вероятные состояния. Таким образом, формула Больцмана позволяет дать статистическое толкование второго начала термодинамики. Оно, являясь статистическим законом, описывает закономерности хаотического движения большого числа частиц, составляющих замкнутую систему.
Укажем еще две формулировки второго начала термодинамики:
1) по Кельвину: невозможен круговой процесс, единственным результатом которого является превращение теплоты, полученной от нагревателя, в эквивалентную ей работу;
2) по Клаузиусу: невозможен круговой процесс, единственным результатом которого является передача теплоты от менее нагретого тела к более нагретому.
Слайд 4
Можно довольно просто доказать (предоставим это читателю) эквивалентность формулировок Кельвина и
Можно довольно просто доказать (предоставим это читателю) эквивалентность формулировок Кельвина и
В середине XIX в. возникла проблема так называемой тепловой смерти Вселенной. Рассматривая Вселенную как замкнутую систему и применяя к ней второе качало термодинамики, Клаузиус свел его содержание к утверждению, что энтропия Вселенной должна достигнуть своего максимума. Это означает, что со временем все формы движения должны перейти в тепловую. Переход же теплоты от горячих тел к холодным приведет к тому, что температура всех тел во Вселенной сравняется, т. е. наступит полное тепловое равновесие и все процессы во Вселенной прекратятся — наступит тепловая смерть Вселенной. Ошибочность вывода о тепловой смерти заключается в том, что бессмысленно применять второе начало термодинамики к незамкнутым системам, например к такой безграничной и бесконечно развивающейся системе, как Вселенная.
Первые два начала термодинамики дают недостаточно сведений о поведении термодинамических систем при нуле Кельвина.
Слайд 5
Они дополняются третьим началом термодинамика, или теоремой Нернста* — Планка: энтропия
Они дополняются третьим началом термодинамика, или теоремой Нернста* — Планка: энтропия
Так как энтропия определяется с точностью до аддитивной постоянной, то эту постоянную удобно взять равной нулю. Отметим, однако, что это произвольное допущение, поскольку энтропия по своей сущности всегда определяется с точностью до аддитивной постоянной. Из теоремы Нернста — Планка следует, что теплоемкости Ср и СV при 0 К равны нулю.
Из формулировки второго начала термодинамики по Кельвину следует, что вечный двигатель второго рода — периодически действующий двигатель, совершающий работу за счет охлаждения одного источника теплоты, — невозможен. Для иллюстрации этого положения рассмотрим работу теплового двигателя (исторически второе начало термодинамики и возникло из анализа работы тепловых двигателей).
Принцип действия теплового двигателя приведен на рис. 85. От термостата* с более высокой температурой Т1, называемого нагревателем, за цикл отнимается количество теплоты Q1, а термостату с более низкой температурой Т2, называемому холодильником, за цикл передается количество теплоты Q2, при этом совершается работа А = Q1 – Q2.
Слайд 6
Чтобы термический коэффициент полезного действия теплового двигателя ( ) был равен
Чтобы термический коэффициент полезного действия теплового двигателя ( ) был равен
Карно (1796 — 1832) показал, что для работы теплового
двигателя необходимо не менее двух источников теплоты
с различными температурами, иначе это противоречило бы второму началу термодинамики.
Двигатель второго рода, будь он возможен, был бы практически вечным. Охлаждение, например, воды океанов на 1° дало бы огромную энергию. Масса воды в Мировом океане составляет примерно 1018 т, при охлаждении которой на 1° выделилось бы примерно 1024 Дж теплоты, что эквивалентно полному сжиганию 1014 т угля. Железнодорожный состав, нагруженный этим количеством угля, растянулся бы на расстояние 1010 км, что приблизительно совпадает с размерами Солнечной системы!
Процесс, обратный происходящему в тепловом двигателе, используется в холодильной машине, принцип действия которой представлен на рис. 2. Системой за цикл от термостата с более низкой температурой Т2 отнимается количество теплоты Q2 и отдается термостату с более высокой температурой Т1 количество теплоты Q1.
Рисунок 1
Рисунок 2
Слайд 7
Для кругового процесса, согласно (56.1), Q=A, но, по условию, Q =
Для кругового процесса, согласно (56.1), Q=A, но, по условию, Q =
Однако второе начало термодинамики не следует представлять так, что оно совсем запрещает переход теплоты от менее нагретого тела к более нагретому. Ведь именно такой переход осуществляется в холодильной машине. Но при этом надо помнить, что внешние силы совершают работу над системой, т. е. этот переход не является единственным результатом процесса.
Основываясь на втором начале термодинамики, Карно вывел теорему, носящую теперь его имя: из всех периодически действующих тепловых машин, имеющих одинаковые температуры нагревателей (T1) и холодильников (T2), наибольшим к. п. д. обладают обратимые машины; при этом к. п. д. обратимых машин, работающих при одинаковых температурах нагревателей (T1) и холодильников (T2), равны друг другу и не зависят от природы рабочего тела (тела, совершающего круговой процесс и обменивающегося энергией с другими телами), а определяются только температурами нагревателя и холодильника.
Слайд 8
Карно теоретически проанализировал обратимый наиболее экономичный цикл, состоящий из двух изотерм
Карно теоретически проанализировал обратимый наиболее экономичный цикл, состоящий из двух изотерм
Цикл Карно изображен на рис. 3, где изотермические расширение и сжатие заданы соответственно кривыми 1—2 и 3—4, а адиабатические расширение и сжатие — кривыми 2—3 и 4—1. При изотермическом процессе U=const, поэтому, согласно
( ), количество теплоты Q1, полученное газом от нагревателя, равно работе расширения А12, совершаемой газом при переходе из состояния 1 в состояние 2:
(1)
При адиабатическом расширении 2—3 теплообмен с окружающей средой отсутствует и работа расширения А23 совершается за счет изменения внутренней энергии ( ) и ( ):
Рисунок 3
Слайд 9
Количество теплоты Q2, отданное газом холодильнику при изотермическом сжатии, равно работе
Количество теплоты Q2, отданное газом холодильнику при изотермическом сжатии, равно работе
(2)
Работа адиабатического сжатия
Работа, совершаемая в результате кругового процесса
и, как можно показать, определяется площадью, заштрихованной на рис. 3. Термический к. п. д. цикла Карно, согласно ( ),
Применив уравнение ( ) для адиабат 2—3 и 4—1, получим
откуда
(3)
Подставляя (1) и (2) в формулу ( ) и учитывая (3), получаем
(4)
Слайд 10
т. е. для цикла Карно к. п. д. действительно определяется только
т. е. для цикла Карно к. п. д. действительно определяется только
Обратный цикл Карно положен в основу действия тепловых насосов. В отличие от холодильных машин тепловые насосы должны как можно больше тепловой энергии отдавать горячему телу, например системе отопления. Часть этой энергии отбирается от окружающей среды с более низкой температурой, а часть — получается за счет механической работы, производимой, например, компрессором.
Теорема Карно послужила основанием для установления термодинамической шкалы температур. Сравнив левую и правую части формулы (4), получим
(5)
т. е. для сравнения температур Т1 и T2 двух тел необходимо осуществить обратимый цикл Карно, в котором одно тело используется в качестве нагревателя, другое — холодильника
Слайд 11 dl
Если ток со временем возрастает, то — >0 и ξ i
dl
Если ток со временем возрастает, то — >0 и ξ i
dt
направлен навстречу току, обусловленному внешним источником, и замедляет его
dl
возрастание. Если ток со временем убывает, то — <0 и ξ i >0, т. е. индукционный ток
dt
имеет такое же направление, как и убывающий ток в контуре, и замедляет его убывание. Таким образом, контур, обладая определенной индуктивностью, приобретает электрическую инертность, заключающуюся в том, что любое изменение тока тормозится тем сильнее, чем больше индуктивность контура
Рассмотрим два неподвижных контура (1 и 2), расположенных достаточно близко друг от друга (рис. 4). Если в контуре 1 течет ток 11 то магнитный поток, создаваемый этим током (поле, создающее этот поток, на рисунке изображено
сплошными линиями), пропорционален 11
Обозначим через Ф21 ту часть потока, которая пронизывает
контур 2. Тогда
Ф21=L21I1 (9)
где L21 — коэффициент пропорциональности.
Если ток 11 изменяется, то в контуре 2 индуцируется э.д.с. ξ i2, которая по закону Фарадея (2) равна и противоположна по знаку скорости изменения магнитного потока Ф21 созданного током в первом контуре и пронизывающего второй:
Рисунок 4
Слайд 12 dФ21 dl1
ξS= —— = -L21— dt dt
Анологично, при протекании в контуре
dФ21 dl1
ξS= —— = -L21— dt dt
Анологично, при протекании в контуре
Ф12 = L12 I2
Если ток 12 изменяется, то в контуре / индуцируется э.д.с. ξ i 1 , которая равна и проти -воположна по знаку скорости изменения магнитного потока Ф12, созданного током во втором контуре н пронизывающего первый:
dФ12 dl2
ξ i 1 = - —— = - L12 ——
dt dt
Явление возникновения э.д.с.. в одном из контуров при изменении силы тока в другом называется взаимной индукцией. Коэффициенты пропорциональности L21 и L12 называются взаимной индуктивностью контуров. Расчеты, подтверждаемые опытом, показывают, что L 21 и L12n равны друг другу, т. е.
L12=L21 (10)
Коэффициенты L12 и L21 зависят от геометрической формы, размеров, взаимного расположения контуров и от магнитной проницаемости окружающей контуры среды. Единица взаимной индуктивности та же, что и для индуктивности, - генри (Гн).
Рассчитаем взаимную индуктивность двух катушек, намотанных на общий тороидальный сердечник. Этот случай имеет большое практическое значение (рис. 5).