Презентации, доклады, проекты по физике

prezik_22
prezik_22
ИСТОРИЯ ОТКРЫТИЯ Инфракрасное излучение было открыто в 1800 году английским астрономом Уильямом Гершелем. Занимаясь исследованием Солнца, он искал способ уменьшения нагрева инструмента, с помощью которого велись наблюдения. Определяя с помощью термометров действие разных участков видимого спектра, Гершель обнаружил, что «максимум тепла» лежит за насыщенным красным цветом и, возможно, «за видимым преломлением». Это исследование положило начало изучению инфракрасного излучения. ОБЩИЕ СВЕДЕНИЯ Инфракра́сное излуче́ние — электромагнитное излучение, занимающее спектральную область между красным концом видимого света (с длиной волны λ = 0,74 мкм и частотой 430 ТГц) и микроволновым радиоизлучением (λ ~ 1—2 мм, частота 300 ГГц). Инфракрасное излучение составляет большую часть излучения ламп накаливания, около 50 % излучения Солнца; инфракрасное излучение испускают некоторые лазеры. Для его регистрации пользуются тепловыми и фотоэлектрическими приёмниками, а также специальными фотоматериалами.
Продолжить чтение
Аспан сферасы
Аспан сферасы
І. Жұлдыздардың, планеталардың, т.б. аспан денелерінің орналасу орындарын анықтау және өлшеу сияқты практикалық мәселелерді шешу үшін астрономияда аспан сферасы деген ұғым колданылады. Аспан сферасы—радиусы анықталмаған жорамал сфера. Аспан шырақтары, әртүрлі қашықтықта болғандықтан, оның бетіне бақылаушы белгілі бір уақытта өзі орналасқан орыннан көретін бүкіл аспан шырақтары проекциялаиады (1-сурет). Аспан сферасында тек бұрыштық өлшеулер ғана карастырылады. Бұрыштық қашықтық деп сферадағы екі нүктенің арасындағы доғамен өлшенетін қашықтықты немесе оған сәйкес орталык бұрыш шамасын айтады. Яғни, бұл —бақылаушы көзімен қарағандағы (аспан сферасының орталық нүктесінен) осы екі нүктеге тарайтын сәулелердің арасындағы бұрыш. ІІ. Аспан сферасының негізгі элементтері. Зенит (Z) нүктесі бакылаушының дәл төбесінде, ал Надир (Z1) — сфераның қарама-қарсы нүктесінде орналаскан. Осы екі нүктені қосатын түзу вертикаль сызық немесе тік сызық, оған перпендикуляр әрі аспан сферасының орталық нүктесі арқылы өтетін жазықтық математикалық немесе нақты көкжиек жазықтығы деп аталады. Ол аспан сферасын қиып, үлкен дөңгелек (центрі аспан сферасының центрімен сәйкес келетін шеңбер мағынасында) — нақты көкжиек (немесе жай ғана көкжиек) түзеді. Көкжиек аспан сферасын кәрінетін және кәрінбейтін екі бөлікке бөледі. Зениттен М шырак аркылы надирге дейін өтетін үлкен дөңгелек шырақ вертикалі деп аталады. Аспан сферасы және шырақтардың тәуліктік айналысы дірние осінің төңірегінде өтеді.  Жер өлшемі жұлдыздарға дейінгі қашықтықпен салыстырғанда өте кіші болғандықтан, іс жүзінде дүние осі жер бетіндегі кез келген орын үшін Жер осіне параллель болады.  Дүние осінің аспан сферасымен қиылысатын нүктелері аспан сферасының айналысына катыспайды. Сондықтан да олар дүние полюстері деп аталады. Төңірегінде аспан сферасының айналысы (сфераның орталық нүктесінде орналаскан бакылаушы үшін) сағат тілін айналу бағытына кері болатын полюс дүниенің солтүстік полюсі, оған карсы полюс дүниенің оңтүстік полюсі деп аталады. Дүниені солтүстік полюсі маңында (1°-ка жуық қашықтықта) Темірқазық жұлдызы орналасқан.
Продолжить чтение
Lection28
Lection28
Для решения этой задачи Бор, сохраняя классический подход к описанию поведения электрона в атоме, выдвинул три постулата, которые называются постулатами Бора. Сразу же заметим, что физический смысл этих постулатов не только не мог быть объяснен в классической физике, но, более того, находился в глубоком противоречии с классическим описанием движения электрона в атоме. Подлинный смысл и значение постулатов Бора вскрылись позднее, после создания квантовой механики. Теория Бора развивалась им для атома водорода и так называемых водородоподобных систем, состоящих из ядра с зарядом Ze и одного электрона, движущегося вокруг ядра. Примерами подобных систем являются однократно ионизованный гелий (Не+), двукратно ионизованный литий (Li++) и другие ионы. Такие системы называются также изоэлектронными водороду. Для водородоподобных систем все сериальные формулы, в частности формулы (28.5), вместо R содержат произведение RZ2. Первый постулат Бора называется постулатом стационарных состояний. Он заключается в следующем: в атоме существуют некоторые стационарные состояния, не изменяющиеся во времени без внешних воздействий. В этих состояниях атом не излучает электромагнитных волн. Стационарным состояниям атома соответствуют стационарные орбиты, по которым движутся электроны. Несмотря на то, что электроны движутся ускоренно, они не излучают электромагнитных волн. В этом утверждении первого постулата Бора содержится отказ от выводов классической электродинамики об излучении энергии ускоренно движущимся зарядом. Второй постулат Бора называется правилом квантования орбит и утверждает, что в стационарном состоянии атома электрон, двигаясь по круговой орбите, должен иметь дискретные, квантованные значения момента импульса: (28.6)
Продолжить чтение
ФОМНЭ_2022_Лекция № 2
ФОМНЭ_2022_Лекция № 2
Основные особенности и принципы квантовой механики. Соотношение неопределенностей Гейзенберга Понятие о зонной теории твердых тел. Основные положения Образование энергетических зон Особенности зонной схемы Деление твердых тел на проводники, полупроводники и диэлектрики Электропроводность металлов и полупроводников Собственная и примесная проводимость полупроводников Уровень Ферми в примесных полупроводниках Основные особенности и принципы квантовой механики. Луи де Бройль 1892 - 1987 Гипотеза де Бройля (1924) – корпуску-лярно-волновой дуализм присущ не только оптическим явлениям, но имеет универ-сальное значение. Частицы вещества наряду с корпускулярными также имеют волновые свойства. Де Бройль перенёс на случай частиц вещества те же правила перехода от классической картины мира к квантово-механической, какие справедли-вы для света. Свет можно представить как фотоны с энергией:     где - приведенная постоянная Планка (постоянная Дирака)   - постоянная Планка Импульс фотона света -   где     - длина волны света.
Продолжить чтение
0008959c-88e65e04
0008959c-88e65e04
Электромагнитное излучение небесных тел — основной источник информации о космических объектах. Исследуя электромагнитное излучение, можно узнать температуру, плотность, химический состав и другие характеристики интересующего нас объекта. Полное описание свойств электромагнитного излучения и его взаимодействия с веществом дается квантовой электродинамикой — одной из самых сложных теорий современной физики. Согласно этой теории, электромагнитное излучение обладает как волновыми свойствами, так и свойствами потока частиц, называемых фотонами или квантами электромагнитного поля. Волновые свойства электромагнитного излучения определяются взаимодействующими переменными электрическими и магнитными полями. Так же как и любая волна, электромагнитное излучение характеризуется частотой, обозначаемой обычно буквой v, и длиной волны λ. Длина волны и частота связаны друг с другом формулой: V = c/λ; где с — скорость света. Очень важным свойством электромагнитного излучения является то, что скорость его распространения в вакууме не зависит ни от длины волны, ни от скорости движения источника и всегда равна 300 000 км/с.
Продолжить чтение
Гармонические колебания
Гармонические колебания
Колебания называются свободными (или собственными), если они совершаются за счет первоначально сообщенной энергии при последующем отсутствии внешних воздействий на колебательную систему (систему, совершающую колебания). Простейшим типом колебаний являются гармонические колебания — колебания, при которых колеблющаяся величина изменяется со временем по закону синуса (косинуса). Рассмотрение гармонических колебаний важно по двум причинам: колебания, встречающиеся в природе и технике, часто имеют характер, близкий к гармоническому; различные периодические процессы (процессы, повторяющиеся через равные промежутки времени) можно представить как наложение гармонических колебаний. Гармонические колебания величины s описываются уравнением типа (1) где А максимальное значение колеблющейся величины, называемое амплитудой колебаний, - круговая (циклическая) частота, - начальная фаза колебаний в момент времени t = 0, ( ) - фаза колебаний и момент времени t. Так как косинус изменяется в пределах от +1 до -1, то s может принимать значения от +А до -А.
Продолжить чтение
1664775489323__ml7bfa (1)
1664775489323__ml7bfa (1)
1.1.1. Механическое движение и его виды. 1.1.2. Относительность механического движения. 1.1.3. Скорость. 1.1.4. Ускорение. 1.1.5. Равномерное движение. 1.1.6. Прямолинейное равноускоренное движение. 1.1.7. Свободное падение (ускорение свободного падения). 1.1.8. Движение по окружности с постоянной по модулю скоростью. Центростремительное ускорение. Использованные ресурсы. Перейти к решению задач 1.1.1. Механическое движение и его виды Механическим движением тела называют изменение его положения в пространстве относительно других тел с течением времени. Тело, размерами которого в данных условиях можно пренебречь, называется материальной точкой. Траектория - некоторая линия, которую описывает тело (материальная точка) с течением времени, перемещаясь из одной точки в другую. Путь ( S ) - расстояние, отсчитываемое вдоль траектории за время (скалярная величина). Перемещение ( ) - вектор, соединяющий начальное и конечное положение тела.
Продолжить чтение
Ослабление сигнала в волоконных световодах
Ослабление сигнала в волоконных световодах
Потери на поглощение существенно зависят от чистоты материала и при наличии посторонних примесей могут быть значительными I окно прозрачности II окно прозрачности III окно прозрачности I – λ = 0,85мкм, α=3дБ/км II – λ = 1,3 мкм, α=0,7дБ/км 0,34-0,36 дБ/км - ООВ III – λ = 1,55мкм, α=0,22дБ/км - ООВ IV - λ = 1,565 - 1,620мкм V – λ = 1,350 - 1,450мкм λ, мкм α, дБ/км Ослабление за счет поглощения в инфракрасном диапазоне обусловлено собственным резонансным поглощением в УФ- и ИК-областях. Ультрафиолетовое поглощение определяет затухание в рабочем диапазоне длин волн и связано с потерями на диэлектрическую поляризацию, линейно растет с частотой и существенно зависит от свойств материала световодах (tg β). Это так называемое собственное поглощение кварца, механизм возникновения которого свя3ан с поведением диэлектрика в электрическом поле
Продолжить чтение