логика

Содержание

Слайд 2

Алгебра логики (булева алгебра) - это раздел математики, изучающий высказывания, рассматриваемые со

Алгебра логики (булева алгебра) - это раздел математики, изучающий высказывания, рассматриваемые со
стороны их логических значений (истинности или ложности) и логических операций над ними.

Слайд 3

Джордж Буль

Джордж Буль

Слайд 4

Логическое высказывание — это любое повествовательное предложение, в отношении которого можно однозначно

Логическое высказывание — это любое повествовательное предложение, в отношении которого можно однозначно
сказать, истинно оно или ложно.

Слайд 5

Пример:
«Трава зеленая» -истинное высказывание.
«Лев – птица» - ложное высказывание.

Пример: «Трава зеленая» -истинное высказывание. «Лев – птица» - ложное высказывание.

Слайд 6

Не всякое предложение является логическим высказыванием. Пример: «ученик десятого класса» «информатика —

Не всякое предложение является логическим высказыванием. Пример: «ученик десятого класса» «информатика — интересный предмет».
интересный предмет».

Слайд 7

Употребляемые в обычной речи слова и словосочетания "не", "и", "или", "если... ,

Употребляемые в обычной речи слова и словосочетания "не", "и", "или", "если... ,
то", "тогда и только тогда" и другие позволяют из уже заданных высказываний строить новые высказывания. Такие слова и словосочетания называются логическими связками.

Слайд 8

Высказывания, образованные из других высказываний с помощью логических связок, называются составными. Высказывания,

Высказывания, образованные из других высказываний с помощью логических связок, называются составными. Высказывания,
не являющиеся составными, называются элементарными.

Слайд 9

Пример:
Элементарные высказывания:
«Петров — врач»,
«Петров — шахматист»
Составные высказывания:
"Петров

Пример: Элементарные высказывания: «Петров — врач», «Петров — шахматист» Составные высказывания: "Петров
— врач и шахматист", понимаемое как "Петров — врач, хорошо играющий в шахматы".
"Петров — врач или шахматист", понимаемое в алгебре логики как "Петров или врач, или шахматист, или и врач и шахматист одновременно".

Слайд 10

Чтобы обращаться к логическим высказываниям, их обозначают буквами.
Пример:
А = «Луна –

Чтобы обращаться к логическим высказываниям, их обозначают буквами. Пример: А = «Луна
спутник Земли», А = 1
В = « 3* 2 = 5», В = 0

Слайд 11

Пример:
А ="Тимур поедет летом на море",
В = "Тимур летом отправится в

Пример: А ="Тимур поедет летом на море", В = "Тимур летом отправится
горы".
А и В = "Тимур летом побывает и на море,  и в горах»

Слайд 12

Операции над логическими
высказываниями

Операции над логическими высказываниями

Слайд 13

Таблица истинности это табличное представление логической схемы (операции), в котором перечислены все

Таблица истинности это табличное представление логической схемы (операции), в котором перечислены все
возможные сочетания значений истинности входных сигналов (операндов) вместе со значением истинности выходного сигнала (результата операции) для каждого из этих сочетаний.

Слайд 14

Логическое «отрицание» 
(инверсия или НЕ) обозначается чертой над высказыванием Ā .

Логическое «отрицание» (инверсия или НЕ) обозначается чертой над высказыванием Ā .

Слайд 15

Диаграмма Эйлера-Венна:

Диаграмма Эйлера-Венна:

Слайд 16

Пример:
А = «Луна — спутник Земли»
А = "Луна — не спутник Земли"

Пример: А = «Луна — спутник Земли» А = "Луна — не спутник Земли"

Слайд 17

Высказывание А истинно, когда A ложно, и ложно, когда A истинно.

Таблица

Высказывание А истинно, когда A ложно, и ложно, когда A истинно. Таблица истинности
истинности

Слайд 18

Логическое умножение
( «и», конъюнкция (лат. conjunctio — соединение)) обозначается точкой "

Логическое умножение ( «и», конъюнкция (лат. conjunctio — соединение)) обозначается точкой "
. " (может также обозначаться знаками /\ или &).
А . В, А /\ В, А & В

Слайд 19

Диаграмма Эйлера-Венна:

Диаграмма Эйлера-Венна:

Слайд 20

Пример:
А = «10 делится на 2», А= 1
В = «5 больше

Пример: А = «10 делится на 2», А= 1 В = «5
3», В = 1
С = « 4 – нечётное число», С = 0
А & В = «10 делится на 2 и 5 больше 3», А & В = 1
А & С = «10 делится на 2 и 4 – нечётное число», А & С = 0

Слайд 21

Высказывание А · В истинно тогда и только тогда, когда оба высказывания

Высказывание А · В истинно тогда и только тогда, когда оба высказывания
А и В истинны.

Таблица истинности

Слайд 22

Логическое сложение 
( «или», дизъюнкция (лат. disjunctio — разделение) обозначается знаком v

Логическое сложение ( «или», дизъюнкция (лат. disjunctio — разделение) обозначается знаком v
или +.

А V В, А + В

Слайд 23

Диаграмма Эйлера-Венна:

Диаграмма Эйлера-Венна:

Слайд 24

Высказывание А v В ложно тогда и только тогда, когда оба высказывания

Высказывание А v В ложно тогда и только тогда, когда оба высказывания
А и В ложны.

Таблица истинности

Слайд 25

Импликация (лат. implico — тесно связаны) 
-операция, выражаемая связками «если ...,

Импликация (лат. implico — тесно связаны) -операция, выражаемая связками «если ..., то…»,
то…»,  «из ... следует…»,  «... влечет ...».
Обозначается знаком .
А В
.

Слайд 26

Высказывание А В ложно тогда и только тогда, когда А истинно, а

Высказывание А В ложно тогда и только тогда, когда А истинно, а
В – ложно.

Таблица истинности

Слайд 27

Эквиваленция (двойная импликация)
- операция, выражаемая связками «тогда и только тогда», «необходимо

Эквиваленция (двойная импликация) - операция, выражаемая связками «тогда и только тогда», «необходимо
и достаточно», «... равносильно ...» Обозначается знаком или  ~.
А В, А ~ В.

Слайд 28

Высказывание А В истинно тогда и только тогда, когда значения А и

Высказывание А В истинно тогда и только тогда, когда значения А и В совпадают. Таблица истинности
В совпадают.  

Таблица истинности

Слайд 29

А = «10 делится на 2», А= 1
В = «5 больше 3»,

А = «10 делится на 2», А= 1 В = «5 больше
В = 1
С = « 4 – нечётное число», С = 0
К = « 3 – чётное число», К = 0
А + В = «10 делится на 2 или 5 больше 3», А + В = 1
А + С = «10 делится на 2 или 4 – нечётное число», А + С = 1
С + К = « 4 – нечётное число или 3 – чётное число», С+К = 0

Пример:

Слайд 30

Порядок выполнения логических операций
1.Сначала выполняется операция отрицания (“не”),
2. Затем конъюнкция

Порядок выполнения логических операций 1.Сначала выполняется операция отрицания (“не”), 2. Затем конъюнкция
(“и”),
3. После конъюнкции — дизъюнкция (“или”),
4. В последнюю очередь — импликация и эквиваленция.

Слайд 31

A → B = ¬ A ∨ B
Законы де Моргана ¬

A → B = ¬ A ∨ B Законы де Моргана ¬
(A ∧ B) = ¬ A ∨ ¬ B
¬ (A ∨ B) = ¬ A ∧ ¬ B
3. Законы коммутативности А&B ⬄ B&A
AVB ⬄ BVA
4. Законы ассоциативности (А&B)&C ⬄ A&(B&C)
(АVB)VC ⬄ AV(BVC)
5. Законы дистрибутивности А&(BVC) ⬄ (A&B)V(A&C)
АV(B&C) ⬄ (AVB)&(AVC)
6. Законы поглощения A&(AVB)⬄A
AV(A&B)⬄A
7. Законы противоречия A&¬A=0
8. Закон исключения третьего AV¬A=1
9. Закон двойного отрицания ¬¬A=A
10. Закон контрапозиции A-›B⬄ ¬A->¬B

Законы логики.

Имя файла: логика.pptx
Количество просмотров: 24
Количество скачиваний: 0