- Главная
- Математика
- Логарифмы
Содержание
- 2. История создания Предпосылки к открытию логарифмов были уже в Античности. Архимед знал о связи между арифметической
- 3. Джон Непер-отец логарифмов В начале XVI века два ученых, не зная об исследованиях друг друга, опубликовали
- 4. Дальнейшая история логарифмов В 1620 году Эдмунд Уингейт предложил модель логарифмической линейки. И до изобретения калькулятора
- 6. Другие области применения логарифмов 1)интенсивность звука (децибелы) в физике; 2)шкала яркости звёзд в астрономии; 3)активность водородных
- 7. Спасибо за внимание!
- 9. Скачать презентацию
Слайд 2История создания
Предпосылки к открытию логарифмов были уже в Античности. Архимед знал о связи между арифметической
История создания
Предпосылки к открытию логарифмов были уже в Античности. Архимед знал о связи между арифметической
и геометрической прогрессиями, а также о некоторых свойствах степеней с натуральным показателем.
Большой толчок к развитию не только математики, но и других естественных наук дала Эпоха Великих Географических Открытий. Население росло, запасы истощались, и в поисках новых земель и приключений отважные мореплаватели отправлялись бороздить просторы всех шести океанов. И, чтобы точно проложить курс через моря и океаны, сложить 5 и 7 было явно недостаточно.
Нужны были сложные расчеты с привязкой к звездному небу, учитывающие расположение звезд и конфигурацию планет, для определения курса корабля, а калькулятор в карманы лосин, туго обтягивающих бедра капитана корабля, не помещался. Астрономы тратили несколько месяцев на трудоемкие расчеты с многозначными числами. В середине XV столетия, сопоставляя значения геометрических и арифметических прогрессий, кому-то из светлых умов пришла идея в расчетах заменить умножение многозначных чисел с громоздкими результатами сложением, взяв геометрическую прогрессию за исходную.
Впервые примеры таких расчетов в 1544 году в книге «Arithmetica integra» опубликовал Михаэль Штифель. Революционной идей ученого был переход от целых показателей степеней к произвольным рациональным числам. Однако развивать свою идею дальше и составлять таблицы для вычислений он не стал.
Большой толчок к развитию не только математики, но и других естественных наук дала Эпоха Великих Географических Открытий. Население росло, запасы истощались, и в поисках новых земель и приключений отважные мореплаватели отправлялись бороздить просторы всех шести океанов. И, чтобы точно проложить курс через моря и океаны, сложить 5 и 7 было явно недостаточно.
Нужны были сложные расчеты с привязкой к звездному небу, учитывающие расположение звезд и конфигурацию планет, для определения курса корабля, а калькулятор в карманы лосин, туго обтягивающих бедра капитана корабля, не помещался. Астрономы тратили несколько месяцев на трудоемкие расчеты с многозначными числами. В середине XV столетия, сопоставляя значения геометрических и арифметических прогрессий, кому-то из светлых умов пришла идея в расчетах заменить умножение многозначных чисел с громоздкими результатами сложением, взяв геометрическую прогрессию за исходную.
Впервые примеры таких расчетов в 1544 году в книге «Arithmetica integra» опубликовал Михаэль Штифель. Революционной идей ученого был переход от целых показателей степеней к произвольным рациональным числам. Однако развивать свою идею дальше и составлять таблицы для вычислений он не стал.
Слайд 3
Джон Непер-отец логарифмов
В начале XVI века два ученых, не зная об исследованиях друг друга, опубликовали
Джон Непер-отец логарифмов
В начале XVI века два ученых, не зная об исследованиях друг друга, опубликовали
свои работы по изучению арифметических и геометрических прогрессий: В 1614 г. шотландский математик Джон Непер опубликовал книгу «Описание удивительной таблицы логарифмов».
В 1620 г. из-под пера швейцарского ученого Иоста Бюрги вышел труд «Таблицы арифметической и геометрической прогрессий, вместе с основательным наставлением, как их нужно понимать и с пользой применять во всяческих вычислениях. Бюрги украл идею Непера. Но во времена, когда не было интернета и международных научных симпозиумов, а информация распространялась «голубиной почтой», 6 лет — не такой большой срок. А одновременное открытие логарифмов, в странах разделенных не только расстоянием, но и языковым барьером, как раз свидетельствует о важности этого открытия. Учитывая, что Джон Непер предложил придуманный им способ вычислений называть логарифм (от греческих слов logos – «отношение» и arithmos – «число», а вместе – «число отношений»), он по праву считается отцом логарифмов.
Еще шотландский математик составил специальные таблицы логарифмов синусов, косинусов и тангенсов, с шагом 1 и с точностью до восьми знаков. С началом практического использования таблиц Непера умножение многозначных чисел и извлечение корней значительно упростилось.
В 1620 г. из-под пера швейцарского ученого Иоста Бюрги вышел труд «Таблицы арифметической и геометрической прогрессий, вместе с основательным наставлением, как их нужно понимать и с пользой применять во всяческих вычислениях. Бюрги украл идею Непера. Но во времена, когда не было интернета и международных научных симпозиумов, а информация распространялась «голубиной почтой», 6 лет — не такой большой срок. А одновременное открытие логарифмов, в странах разделенных не только расстоянием, но и языковым барьером, как раз свидетельствует о важности этого открытия. Учитывая, что Джон Непер предложил придуманный им способ вычислений называть логарифм (от греческих слов logos – «отношение» и arithmos – «число», а вместе – «число отношений»), он по праву считается отцом логарифмов.
Еще шотландский математик составил специальные таблицы логарифмов синусов, косинусов и тангенсов, с шагом 1 и с точностью до восьми знаков. С началом практического использования таблиц Непера умножение многозначных чисел и извлечение корней значительно упростилось.
Слайд 4
Дальнейшая история логарифмов
В 1620 году Эдмунд Уингейт предложил модель логарифмической линейки. И до изобретения калькулятора логарифмическая
Дальнейшая история логарифмов
В 1620 году Эдмунд Уингейт предложил модель логарифмической линейки. И до изобретения калькулятора логарифмическая
линейка оставалась незаменимым помощником инженеров, мореплавателей, и других ученых, которым требовалась работа с большими числами. Впоследствии многие ученые создавали свои таблицы логарифмов, уточняя их значения. Не обошел своим вниманием эту тему и Иоган Кеплер — известный ученый не только открыл законы движения небесных тел, но и составил астрономические таблицы, которые опубликовал в 1624 году с восторженным посвящением Джону Неперу, не зная о смерти отца логарифмов.
Наиболее близко к современному определению логарифмирования подошли Валлис (1685) и Иоганн Бернулли (1694). Эйлер окончательно узаконил логарифмирование как математическое действие, обратное возведению в степень. Многие ученые в своих вычислениях стали пользоваться таблицами логарифмов, а Лаплас Пьер Симон в одном из своих трудов написал фразу, вынесенную в эпиграф статьи: «Изобретение логарифмов, сократив вычисления нескольких месяцев в труд нескольких дней, словно удваивает жизнь астрономов». Астрономами в то время называли не только любителей звездного неба, каждый вечер настраивающих свои телескопы в поисках новых и сверхновых звезд, а любого ученого, использующего в своих расчетах сложные вычисления.
Наиболее близко к современному определению логарифмирования подошли Валлис (1685) и Иоганн Бернулли (1694). Эйлер окончательно узаконил логарифмирование как математическое действие, обратное возведению в степень. Многие ученые в своих вычислениях стали пользоваться таблицами логарифмов, а Лаплас Пьер Симон в одном из своих трудов написал фразу, вынесенную в эпиграф статьи: «Изобретение логарифмов, сократив вычисления нескольких месяцев в труд нескольких дней, словно удваивает жизнь астрономов». Астрономами в то время называли не только любителей звездного неба, каждый вечер настраивающих свои телескопы в поисках новых и сверхновых звезд, а любого ученого, использующего в своих расчетах сложные вычисления.
Слайд 6
Другие области применения логарифмов
1)интенсивность звука (децибелы) в физике;
2)шкала яркости звёзд в астрономии;
3)активность
Другие области применения логарифмов
1)интенсивность звука (децибелы) в физике;
2)шкала яркости звёзд в астрономии;
3)активность
водородных ионов (pH) в химии;
4)шкала Рихтера для определения интенсивности землетрясения в сейсмологии;
5)логарифмическая шкала времени в истории.
4)шкала Рихтера для определения интенсивности землетрясения в сейсмологии;
5)логарифмическая шкала времени в истории.
Слайд 7Спасибо за внимание!
Спасибо за внимание!
- Предыдущая
Структура проблемного портфеляСледующая -
Профилактика утомления