Содержание
- 2. Одной из основных задач, возникающих при исследовании функции, является нахождение промежутков монотонности функции (промежутков возрастания и
- 3. Функция y=f(x) называется возрастающей в некотором интервале, если в точках этого интервала большему значению аргумента соответствует
- 4. возрастающая убывающая убывающая убывающая возрастающая возрастающая и убывающая на интервалах возрастающая и убывающая на интервалах возрастающая
- 5. Если дифференцируемая функция y=f(x) возрастает (убывает) в данном интервале, то производная этой функции не отрицательна (не
- 6. Если производная функции y=f(x) положительна (отрицательна) на некотором интервале, то функция в этом интервале монотонно возрастает
- 7. Находим область определения функции f(x). Вычисляем производную f’(x) данной функции. Находим точки, в которых f’(x)=0 или
- 8. Область определения: R. Функция непрерывна. Вычисляем производную : y’=6x²-6x-36. Находим критические точки: y’=0. x²-x-6=0 Д=1-4*(-6)*1=1+24=25 Делим
- 9. Область определения: R. Функция непрерывна. Вычисляем производную : y’=3x²-6x. Находим критические точки: y’=0. x²-2x=0 x(x-2)=0 x1=0
- 10. Точку x=x0 называют точкой минимума функции y=f(x), если у этой точки существует окрестность, для всех точек
- 11. Если функция y=f(x) имеет экстремум в точке x=x0, то в этой точке производная функции или равна
- 12. Если производная f’(x) при переходе через точку x0 меняет знак, то точка x0 является точкой экстремума
- 13. Область определения: R. Функция непрерывна. Вычисляем производную : y’=-6x²-6x+12. Находим критические точки: y’=0. -x²-x+2=0 Д=1-4*(-1)*2=1+8=9 x1=1;
- 14. Исследовать на экстремум функцию y=x2+2. Решение: Находим область определения функции: D(y)=R. Находим производную: y’=(x2+2)’=2x. Приравниваем её
- 15. Исследовать на экстремум функцию y=x3+3x2+9x-6. Решение: Находим область определения функции: D(y)=R. Находим производную: y’=(x3+3x2+9x-6)’=3x2+6x+9. Приравниваем её
- 17. Скачать презентацию