теория вероятностей задачи

Содержание

Слайд 2

БРОСАНИЕ МОНЕТЫ

БРОСАНИЕ МОНЕТЫ

Слайд 3

МОНЕТА БРОШЕНА ДВА РАЗА. КАКОВА ВЕРОЯТНОСТЬ ВЫПАДЕНИЯ ОДНОГО «ОРЛА» И ОДНОЙ «РЕШКИ»?

МОНЕТА БРОШЕНА ДВА РАЗА. КАКОВА ВЕРОЯТНОСТЬ ВЫПАДЕНИЯ ОДНОГО «ОРЛА» И ОДНОЙ «РЕШКИ»?
Решение:
При бросании одной монеты возможны два исхода –
«орёл» или «решка».
При бросании двух монет – 4 исхода (2*2=4):
«орёл» - «решка» или ОР
«решка» - «решка» РР
«решка» - «орёл» РО
«орёл» - «орёл» ОО
Один «орёл» и одна «решка» выпадут в двух случаях из четырёх. Р(А)=2:4=0,5.
Ответ. 0,5.

Слайд 4

МОНЕТА БРОШЕНА ТРИ РАЗА. КАКОВА ВЕРОЯТНОСТЬ ВЫПАДЕНИЯ ДВУХ «ОРЛОВ» И ОДНОЙ «РЕШКИ»?

МОНЕТА БРОШЕНА ТРИ РАЗА. КАКОВА ВЕРОЯТНОСТЬ ВЫПАДЕНИЯ ДВУХ «ОРЛОВ» И ОДНОЙ «РЕШКИ»?
Решение.
При бросании трёх монет возможны 8 исходов (2*2*2=8):
«орёл» - «решка» - «решка» или ОРР
«решка» - «решка» - «решка» РРР
«решка» - «орёл» - «решка» РОР
«орёл» - «орёл» - «решка» ООР
«решка» - «решка» -«орёл» РРО
«решка» - «орёл» - «орёл» РОО
«орёл» - «решка» - «орёл» ОРО
«орёл» - «орёл» - «орёл» ООО
Два «орла» и одна «решка» выпадут в трёх случаях из восьми.
Р(А)=3:8=0,375.
Ответ. 0,375.

Слайд 5

ИГРА В КОСТИ(КУБИК)

ИГРА В КОСТИ(КУБИК)

Слайд 6

ОПРЕДЕЛИТЕ ВЕРОЯТНОСТЬ ТОГО, ЧТО ПРИ БРОСАНИИ КУБИКА ВЫПАЛО БОЛЬШЕ ТРЁХ ОЧКОВ.

ОПРЕДЕЛИТЕ ВЕРОЯТНОСТЬ ТОГО, ЧТО ПРИ БРОСАНИИ КУБИКА ВЫПАЛО БОЛЬШЕ ТРЁХ ОЧКОВ. Решение.
Решение.
Всего возможных исходов N=6.
Числа большие трех - 4, 5, 6 ,
N(A)=3( благоприятные для нас)
Р(А)= 3:6=0,5.
Ответ: 0,5.

Слайд 7

БРОШЕНА ИГРАЛЬНАЯ КОСТЬ. НАЙДИТЕ ВЕРОЯТНОСТЬ ТОГО, ЧТО ВЫПАДЕТ ЧЁТНОЕ ЧИСЛО ОЧКОВ.

БРОШЕНА ИГРАЛЬНАЯ КОСТЬ. НАЙДИТЕ ВЕРОЯТНОСТЬ ТОГО, ЧТО ВЫПАДЕТ ЧЁТНОЕ ЧИСЛО ОЧКОВ. Решение.
Решение.
Всего возможных исходов – 6.
1, 3, 5 — нечётные числа; 2, 4, 6 —чётные числа. Вероятность выпадения чётного числа очков равна 3:6=0,5.
Ответ: 0,5.

Слайд 8

В СЛУЧАЙНОМ ЭКСПЕРИМЕНТЕ БРОСАЮТ ДВЕ ИГРАЛЬНЫЕ КОСТИ. НАЙДИТЕ ВЕРОЯТНОСТЬ ТОГО, ЧТО В СУММЕ

В СЛУЧАЙНОМ ЭКСПЕРИМЕНТЕ БРОСАЮТ ДВЕ ИГРАЛЬНЫЕ КОСТИ. НАЙДИТЕ ВЕРОЯТНОСТЬ ТОГО, ЧТО В
ВЫПАДЕТ 8 ОЧКОВ. РЕЗУЛЬТАТ ОКРУГЛИТЕ ДО СОТЫХ.

Решение.
У данного действия — бросания двух игральных костей — всего 36 возможных исходов, так как 6² = 36.
Благоприятные исходы:
2 6 3 5 4 4 5 3 6 2
Вероятность выпадения восьми очков равна 5:36 ≈ 0,14.
Ответ. 0,14.

Слайд 9

ДВАЖДЫ БРОСАЮТ ИГРАЛЬНЫЙ КУБИК. В СУММЕ ВЫПАЛО 6 ОЧКОВ. НАЙДИТЕ ВЕРОЯТНОСТЬ ТОГО,

ДВАЖДЫ БРОСАЮТ ИГРАЛЬНЫЙ КУБИК. В СУММЕ ВЫПАЛО 6 ОЧКОВ. НАЙДИТЕ ВЕРОЯТНОСТЬ ТОГО,
ЧТО ПРИ ОДНОМ ИЗ БРОСКОВ ВЫПАЛО 5 ОЧКОВ.

Решение.
Всего исходов выпадения 6 очков - 5:
2 4; 4 2; 3 3; 1 5; 5 1.
Благоприятных исходов - 2.
Р(А)=2:5=0,4.
Ответ. 0,4.

Слайд 10

ЛОТЕРЕЯ

ЛОТЕРЕЯ

Слайд 11

НА ЭКЗАМЕНЕ 50 БИЛЕТОВ, РУСЛАН НЕ ВЫУЧИЛ 5 ИЗ НИХ. НАЙДИТЕ ВЕРОЯТНОСТЬ

НА ЭКЗАМЕНЕ 50 БИЛЕТОВ, РУСЛАН НЕ ВЫУЧИЛ 5 ИЗ НИХ. НАЙДИТЕ ВЕРОЯТНОСТЬ
ТОГО, ЧТО ЕМУ ПОПАДЕТСЯ ВЫУЧЕННЫЙ БИЛЕТ.

Решение.
1)Всего билетов (исходов) N=50
2) Руслан выучил: N(A)=50- 5=45 билетов(благоприятные исходы)
3) Р(А)=45:50=0,9.
Ответ.0,9.

Слайд 12

ТЕ­ЛЕ­ВИ­ЗОР У МАШИ СЛО­МАЛ­СЯ И ПО­КА­ЗЫ­ВА­ЕТ ТОЛЬ­КО ОДИН СЛУ­ЧАЙ­НЫЙ КАНАЛ. МАША ВКЛЮ­ЧА­ЕТ

ТЕ­ЛЕ­ВИ­ЗОР У МАШИ СЛО­МАЛ­СЯ И ПО­КА­ЗЫ­ВА­ЕТ ТОЛЬ­КО ОДИН СЛУ­ЧАЙ­НЫЙ КАНАЛ. МАША ВКЛЮ­ЧА­ЕТ
ТЕ­ЛЕ­ВИ­ЗОР. В ЭТО ВРЕМЯ ПО ТРЕМ КА­НА­ЛАМ ИЗ ДВА­ДЦА­ТИ ПО­КА­ЗЫ­ВА­ЮТ КИ­НО­КО­МЕ­ДИИ. НАЙ­ДИ­ТЕ ВЕ­РО­ЯТ­НОСТЬ ТОГО, ЧТО МАША ПО­ПА­ДЕТ НА КАНАЛ, ГДЕ КО­МЕ­ДИЯ НЕ ИДЕТ.

РЕШЕНИЕ.
1) 20- 3=17 КАНАЛОВ, ГДЕ НЕ ИДЕТ КОМЕДИЯ.
2) 17: 20 = 0,85.   ОТВЕТ: 0,85.

Слайд 13

НА ТА­РЕЛ­КЕ ЛЕЖАТ ПИ­РОЖ­КИ, ОДИ­НА­КО­ВЫЕ НА ВИД: 4 С МЯСОМ, 8 С

НА ТА­РЕЛ­КЕ ЛЕЖАТ ПИ­РОЖ­КИ, ОДИ­НА­КО­ВЫЕ НА ВИД: 4 С МЯСОМ, 8 С
КА­ПУ­СТОЙ И 3 С ВИШ­НЕЙ. ПЕТЯ НА­У­ГАД ВЫ­БИ­РА­ЕТ ОДИН ПИ­РО­ЖОК. НАЙ­ДИ­ТЕ ВЕ­РО­ЯТ­НОСТЬ ТОГО, ЧТО ПИ­РО­ЖОК ОКА­ЖЕТ­СЯ С ВИШ­НЕЙ.

Ре­ше­ние.
1) 4+8+3=15 всего пирожков ( событий).
2) 3: 15= 0,2 – вероятность того, что взят пирожок с вишней.
Ответ: 0,2.

Слайд 14

В КАЖ­ДОЙ ПЯТОЙ БАНКЕ КОФЕ СО­ГЛАС­НО УСЛО­ВИ­ЯМ АКЦИИ ЕСТЬ ПРИЗ. ПРИЗЫ РАС­ПРЕ­ДЕ­ЛЕ­НЫ

В КАЖ­ДОЙ ПЯТОЙ БАНКЕ КОФЕ СО­ГЛАС­НО УСЛО­ВИ­ЯМ АКЦИИ ЕСТЬ ПРИЗ. ПРИЗЫ РАС­ПРЕ­ДЕ­ЛЕ­НЫ
ПО БАН­КАМ СЛУ­ЧАЙ­НО. ГАЛЯ ПО­КУ­ПА­ЕТ БАНКУ КОФЕ В НА­ДЕЖ­ДЕ ВЫ­ИГ­РАТЬ ПРИЗ. НАЙ­ДИ­ТЕ ВЕ­РО­ЯТ­НОСТЬ ТОГО, ЧТО ГАЛЯ НЕ НАЙДЁТ ПРИЗ В СВОЕЙ БАНКЕ.

Ре­ше­ние:
1) 1:5=0,2 вероятность выиграть приз.
2) 1-0,2=0,8 вероятность купить банку без приза. 
Ответ: 0,8.

Слайд 15

СОРЕВНОВАНИЯ

СОРЕВНОВАНИЯ

Слайд 16

В ЧЕМПИОНАТЕ ПО ГИМНАСТИКЕ УЧАСТВУЮТ 20 СПОРТСМЕНОВ: 8 ИЗ РОССИИ, 7 ИЗ

В ЧЕМПИОНАТЕ ПО ГИМНАСТИКЕ УЧАСТВУЮТ 20 СПОРТСМЕНОВ: 8 ИЗ РОССИИ, 7 ИЗ
США, ОСТАЛЬНЫЕ ИЗ КИТАЯ. ПОРЯДОК ВЫСТУПЛЕНИЯ ОПРЕДЕЛЯЕТСЯ ЖРЕБИЕМ. НАЙДИТЕ ВЕРОЯТНОСТЬ ТОГО, ЧТО СПОРТСМЕНКА, ВЫСТУПАЮЩАЯ ПЕРВОЙ, ОКАЖЕТСЯ ИЗ КИТАЯ.

Решение.
Всего исходов 20.
Благоприятных исходов 20- (8+7)=5.
Р(А)=5 : 20=0,25.
Ответ.0,25.

Слайд 17

НА СОРЕВНОВАНИЯ ПО МЕТАНИЮ ЯДРА ПРИЕХАЛИ 4 СПОРТСМЕНА ИЗ ЧЕХИИ, 5 ИЗ

НА СОРЕВНОВАНИЯ ПО МЕТАНИЮ ЯДРА ПРИЕХАЛИ 4 СПОРТСМЕНА ИЗ ЧЕХИИ, 5 ИЗ
СЕРБИИ И 3 ИЗ ПОРТУГАЛИИ. ПОРЯДОК ВЫСТУПЛЕНИЙ ОПРЕДЕЛЯЕТСЯ ЖЕРЕБЬЁВКОЙ. НАЙДИТЕ ВЕРОЯТНОСТЬ ТОГО, ЧТО СПОРТСМЕН, ВЫСТУПАЮЩИЙ ПЯТЫМ, БУДЕТ ИЗ ПОРТУГАЛИИ.

Решение:
Число всех возможных исходов – 12
(4 + 5 + 3 = 12).
Число благоприятных исходов – 3.
Р(А)=3:12=0,25.
Ответ. 0,25.

Слайд 18

ПЕРЕД НАЧАЛОМ ПЕРВОГО ТУРА ЧЕМПИОНАТА ПО БАДМИНТОНУ УЧАСТНИКОВ РАЗБИВАЮТ НА ИГРОВЫЕ ПАРЫ

ПЕРЕД НАЧАЛОМ ПЕРВОГО ТУРА ЧЕМПИОНАТА ПО БАДМИНТОНУ УЧАСТНИКОВ РАЗБИВАЮТ НА ИГРОВЫЕ ПАРЫ
СЛУЧАЙНЫМ ОБРАЗОМ С ПОМОЩЬЮ ЖРЕБИЯ. ВСЕГО В ЧЕМПИОНАТЕ УЧАСТВУЕТ 26 БАДМИНТОНИСТОВ, СРЕДИ КОТОРЫХ 12 УЧАСТНИКОВ ИЗ РОССИИ, В ТОМ ЧИСЛЕ СВЯТОСЛАВ КРУЖКИН. НАЙДИТЕ ВЕРОЯТНОСТЬ ТОГО, ЧТО В ПЕРВОМ ТУРЕ СВЯТОСЛАВ КРУЖКИН БУДЕТ ИГРАТЬ С КАКИМ-ЛИБО БАДМИНТОНИСТОМ ИЗ РОССИИ?

Решение.
Всего исходов – 25 (Святослав Кружкин с 25 бадминтонистами).
Благоприятных исходов – (12-1)=11.
Р(А)=11:25 = 0,44.
Ответ. 0,44.

Слайд 19

КОНКУРС ИСПОЛНИТЕЛЕЙ ПРОВОДИТСЯ В 5 ДНЕЙ. ВСЕГО ЗАЯВЛЕНО 75 ВЫСТУПЛЕНИЙ — ПО ОДНОМУ ОТ

КОНКУРС ИСПОЛНИТЕЛЕЙ ПРОВОДИТСЯ В 5 ДНЕЙ. ВСЕГО ЗАЯВЛЕНО 75 ВЫСТУПЛЕНИЙ — ПО
КАЖДОЙ СТРАНЫ. В ПЕРВЫЙ ДЕНЬ 27 ВЫСТУПЛЕНИЙ, ОСТАЛЬНЫЕ РАСПРЕДЕЛЕНЫ ПОРОВНУ МЕЖДУ ОСТАВШИМИСЯ ДНЯМИ. ПОРЯДОК ВЫСТУПЛЕНИЙ ОПРЕДЕЛЯЕТСЯ ЖЕРЕБЬЁВКОЙ. КАКОВА ВЕРОЯТНОСТЬ, ЧТО ВЫСТУПЛЕНИЕ ПРЕДСТАВИТЕЛЯ РОССИИ СОСТОИТСЯ В ТРЕТИЙ ДЕНЬ КОНКУРСА?

Решение. Всего исходов – 75.
Исполнители из России выступают
на третий день.
Благоприятных исходов: (75-27):4=12.
Р(А)=12 : 75 = 0,16.
Ответ. 0,16 .

Слайд 20

ЧИСЛА

ЧИСЛА

Слайд 21

КОЛЯ ВЫБИРАЕТ ДВУЗНАЧНОЕ ЧИСЛО. НАЙДИТЕ ВЕРОЯТНОСТЬ ТОГО, ЧТО ОНО ДЕЛИТСЯ НА 5.

Решение.
Двузначные

КОЛЯ ВЫБИРАЕТ ДВУЗНАЧНОЕ ЧИСЛО. НАЙДИТЕ ВЕРОЯТНОСТЬ ТОГО, ЧТО ОНО ДЕЛИТСЯ НА 5.
числа: 10;11;12;…;99.
Всего исходов – 90.
Числа, делящиеся на 5:
10, 15, 20, 25 ,…,90, 95.
Благоприятных исходов – 18.
Р(А)= 18 : 90 = 0,2.
Ответ. 0,2.

Слайд 22

РАЗНЫЕ ЗАДАЧИ НА ОПРЕДЕЛЕНИЕ ВЕРОЯТНОСТИ

РАЗНЫЕ ЗАДАЧИ НА ОПРЕДЕЛЕНИЕ ВЕРОЯТНОСТИ

Слайд 23

ФАБРИКА ВЫПУСКАЕТ СУМКИ. В СРЕДНЕМ НА 170 КАЧЕСТВЕННЫХ СУМОК ПРИХОДИТСЯ ШЕСТЬ СУМОК

ФАБРИКА ВЫПУСКАЕТ СУМКИ. В СРЕДНЕМ НА 170 КАЧЕСТВЕННЫХ СУМОК ПРИХОДИТСЯ ШЕСТЬ СУМОК
СО СКРЫТЫМИ ДЕФЕКТАМИ. НАЙДИТЕ ВЕРОЯТНОСТЬ ТОГО, ЧТО КУПЛЕННАЯ СУМКА ОКАЖЕТСЯ КАЧЕСТВЕННОЙ. РЕЗУЛЬТАТ ОКРУГЛИТЕ ДО СОТЫХ.

Решение.
Всего исходов – 176.
Благоприятных исходов – 170.
Р(А)=170:176 ≈ 0,97.
Ответ. 0,97.

Слайд 24

В СРЕДНЕМ ИЗ КАЖДЫХ 100 ПОСТУПИВШИХ В ПРОДАЖУ АККУМУЛЯТОРОВ 94 АККУМУЛЯТОРА ЗАРЯЖЕНЫ.

В СРЕДНЕМ ИЗ КАЖДЫХ 100 ПОСТУПИВШИХ В ПРОДАЖУ АККУМУЛЯТОРОВ 94 АККУМУЛЯТОРА ЗАРЯЖЕНЫ.
НАЙДИТЕ ВЕРОЯТНОСТЬ ТОГО, ЧТО КУПЛЕННЫЙ АККУМУЛЯТОР НЕ ЗАРЯЖЕН.

Решение.
Всего исходов: 100.
Благоприятных исходов: 100-94=6.
Р(А)=6:100=0,06.
Ответ:0,06.

Имя файла: теория-вероятностей-задачи.pptx
Количество просмотров: 38
Количество скачиваний: 0