Методы решения тригонометрических уравнений

Содержание

Слайд 2

Цели:

Повторить, обобщить, систематизировать и углубить знания о методах решения тригонометрических уравнений

Цели: Повторить, обобщить, систематизировать и углубить знания о методах решения тригонометрических уравнений

Слайд 3

Проверка знаний

Проверка знаний

Слайд 4

Найди ошибку


Найди ошибку

Слайд 5

Установи соответствие

Установи соответствие

Слайд 7

Проекты

Применение тригонометрии в жизни
Тригонометрические уравнения при решение геометрических задач
Тригонометрические уравнения в заданиях

Проекты Применение тригонометрии в жизни Тригонометрические уравнения при решение геометрических задач Тригонометрические
ЕГЭ
Графический способ решения тригонометрических уравнений с применением ПК

Слайд 8

Работа в группах

Работа в группах

Слайд 9

ПРИМЕНЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ ПРИ РЕШЕНИИ ГЕОМЕТРИЧЕСКИХ ЗАДАЧ

ПРИМЕНЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ ПРИ РЕШЕНИИ ГЕОМЕТРИЧЕСКИХ ЗАДАЧ

Слайд 10

Условие: В треугольнике из одной вершины проведены высота и медиана. Известно, что

Условие: В треугольнике из одной вершины проведены высота и медиана. Известно, что
угол разделился на три равные части. Определите углы треугольника.
Решение: Пусть в треугольнике АВС из вершины А проведены высота AH и медиана АМ. Каждый из трех равных углов при вершине А обозначим через х . К треугольникам АВМ и АМС (рис. 2) применим теорему синусов.

Слайд 12

Тригонометрические уравнения в заданиях ЕГЭ Тригонометрический круг

Тригонометрические уравнения в заданиях ЕГЭ Тригонометрический круг

Слайд 13

Найти сумму всех целых значений параметра а, при которых уравнение
sin2x –

Найти сумму всех целых значений параметра а, при которых уравнение sin2x –
2cosx – 2 – a = 0
имеет решение.

Слайд 14

Графический способ решения тригонометрических уравнений с применением ПК в программе MS Excel

Графический способ решения тригонометрических уравнений с применением ПК в программе MS Excel

Слайд 15

Применение тригонометрии в жизни

Применение тригонометрии в жизни

Слайд 16

Происхождение названия

Слово «тригонометрия» впервые встречается в 1505г в заглавии книги немецкого теолога

Происхождение названия Слово «тригонометрия» впервые встречается в 1505г в заглавии книги немецкого
и математика Питискуса. Происходит от греческих слов «треугольник» и «мера»,и это наука об измерении треугольников. Хотя название возникло относительно недавно, многие ее понятия и факты были известны уже две тысячи лет назад.

Слайд 17

Древняя Греция

Древнегреческие математики в своих построениях, связанных с измерением дуг круга, использовали

Древняя Греция Древнегреческие математики в своих построениях, связанных с измерением дуг круга,
технику хорд. Перпендикуляр к хорде, опущенный из центра окружности, делит пополам дугу и опирающуюся на неё хорду. Половина поделенной пополам хорды — это синус половинного угла, и поэтому функция синус известна также как «половина хорды». Благодаря этой зависимости, значительное число тригонометрических тождеств и теорем, известных сегодня, были также известны древнегреческим математикам, но в эквивалентной хордовой форме.

Слайд 18

Как тригонометрия дошла до наших дней.

В 8 в. Учёные стран Ближнего и

Как тригонометрия дошла до наших дней. В 8 в. Учёные стран Ближнего
Среднего Востока познакомились с трудами индийских математиков и астрономов и перевели их на арабский язык. В середине 9 века среднеазиатский учёный Аль-Хорезми написал сочинение «Об индийском счёте». После того как арабские трактаты были переведены на латынь, многие идеи индийских математиков стали достоянием европейской, а затем и мировой науки.

Слайд 19

Современная тригонометрия

Современный вид тригонометрии придал крупнейший математик восемнадцатого столетия Л. Эйлер. Он

Современная тригонометрия Современный вид тригонометрии придал крупнейший математик восемнадцатого столетия Л. Эйлер.
ввел известные определения тригонометрических функций, стал рассматривать функции произвольного угла, получил формулы приведения. Различные факты стали доказываться путем применения формул, доказательства стали компактнее и проще.

Слайд 20

Долгое время тригонометрия носила чисто геометрический характер. Такою она была еще в

Долгое время тригонометрия носила чисто геометрический характер. Такою она была еще в
средние века, хотя иногда в ней использовались и аналитические методы, особенно после появления логарифмов. Постепенно тригонометрия органически вошла в математический анализ, механику, физику и технические дисциплины.
Начиная с XVII в., тригонометрические функции начали применять к решению уравнений, задач механики, оптики, электричества, радиотехники, для описания колебательных процессов, распространения волн, движения различных механизмов, для изучения переменного электрического тока и т. д. Поэтому тригонометрические функции всесторонне и глубоко исследовались и приобрели важное значение для всей математики.

Слайд 21

Применение в геодезии

Поскольку почти всякую фигуру можно разбить на множество треугольников, тригонометрия

Применение в геодезии Поскольку почти всякую фигуру можно разбить на множество треугольников,
дает мощный метод решения геометрических задач.
Чтобы воспользоваться им, строители туннелей намечают геодезический пункт, откуда видны концы туннеля. Затем они визируют направления и определяют углы между ними. Математический принцип предельно прост.

Слайд 22

Применение в астрономии

На сфере, как и на поверхности Земли, о расстояниях можно

Применение в астрономии На сфере, как и на поверхности Земли, о расстояниях
судить по углам под которыми они видны из центра сферы.
Положению точки на поверхности Земли определяются ее широтой (углом отсчитываемым от экватора) и долготой. Это дает мореплавателю расстояние и курсовой угол.
Астрономы определяют положение звезд при помощи таких сферических небесных треугольников.

Слайд 23

Применение в технике

Применения тригонометрии разнообразны.
Принцип действия самозахватывающего ключа основан на измерении

Применение в технике Применения тригонометрии разнообразны. Принцип действия самозахватывающего ключа основан на
косинуса угла между захватами. При уменьшении угла косинус возрастает - захваты смыкаются.
При смыкании небольшое перемещение захватов обеспечивает плотное сцепление с отвинчиваемой деталью.

Слайд 24

Применение в электротехнике

В технике и окружающем нас мире часто приходится сталкиваться с

Применение в электротехнике В технике и окружающем нас мире часто приходится сталкиваться
периодическими процессами, которые повторяются через одинаковые промежутки времени. Такие процессы называют колебательными, например, колебания тока в электрической цепи. Колебательные явления различной физической природы подчиняются общим закономерностям, которые можно описать по закону синуса или косинуса.

Слайд 25

Следует отметить применение тригонометрии в таких областях, как теория музыки, акустика, анализ

Следует отметить применение тригонометрии в таких областях, как теория музыки, акустика, анализ
финансовых рынков, электроника, теория вероятностей, статистика, биология, медицина (включая ультразвуковое исследование (УЗИ) и компьютерную томографию), фармацевтика, химия, теория чисел (и, как следствие, криптография), сейсмология, метеорология, океанология, картография, архитектура, фонетика, экономика, электронная техника, машиностроение, компьютерная графика.

Слайд 26

Тригонометрические уравнения одна из самых сложных тем в математике. Тригонометрические уравнения возникают

Тригонометрические уравнения одна из самых сложных тем в математике. Тригонометрические уравнения возникают
при решении задач по планиметрии, стереометрии, астрономии, физики и в других областях. Тригонометрические уравнения и неравенства из года в год встречаются среди заданий ЕГЭ

Слайд 27

Самостоятельная работа «Выбор ответа»

Самостоятельная работа «Выбор ответа»

Слайд 28

Домашнее задание

Домашнее задание

Слайд 29

Продолжи предложение

Сегодня я узнал…..
Было трудно…..
Я научился……………
Меня заинтересовало………….
Мне захотелось………
Меня удивило…………………
Теперь я могу………….

Продолжи предложение Сегодня я узнал….. Было трудно….. Я научился…………… Меня заинтересовало…………. Мне
Имя файла: Методы-решения-тригонометрических-уравнений.pptx
Количество просмотров: 37
Количество скачиваний: 0