ПИФАГОРОВЫ ШТАНЫ НА ВСЕ СТОРОНЫ РАВНЫ

Слайд 2

Это язвительное замечание (которое в полном виде имеет продолжение: чтобы это доказать,

Это язвительное замечание (которое в полном виде имеет продолжение: чтобы это доказать,
нужно снять и показать), придуманное кем-то, по-видимому, потрясенным внутренним содержанием одной важной теоремы евклидовой геометрии, как нельзя точно раскрывает отправную точку, из которой цепь совсем несложных размышлений быстро приводит к доказательству теоремы, а также к еще более значимым результатам. Теорема эта, приписываемая древнегреческому математику Пифагору Самосскому (6 век до нашей эры), известна чуть ли не каждому школьнику и звучит так: квадрат гипотенузы прямоугольного треугольника равен сумме квадратов катетов.

Слайд 3

Пожалуй, многие согласятся, что геометрическая фигура, обозванная шифровкой "пифагоровы штаны на все

Пожалуй, многие согласятся, что геометрическая фигура, обозванная шифровкой "пифагоровы штаны на все
стороны равны", называется квадратом. Ну и с улыбкой на лице добавим безобидной шутки ради, что имелось в виду в продолжении шифрованного сарказма. Итак, "чтобы это доказать, нужно снять и показать". Ясно, что "это" - под местоимением подразумевалась непосредственно теорема, "снять" - это получить в руки, взять названную фигуру, "показать" - имелось в виду слово "покасать", привести в соприкосновение какие-то части фигуры. Вообще "пифагоровыми штанами" окрестили напоминавшую по виду штаны графическую конструкцию, получавшуюся на чертеже Евклида при весьма сложном доказательстве им теоремы Пифагора. Когда нашлось доказательство проще, быть может, какой-то рифмоплет сочинил эту скороговорку-подсказку, чтобы не запамятовать начало подхода к доказательству, а народная молва уж разнесла ее по свету как пустую поговорку.

Слайд 4

Так вот если взять квадрат, и внутрь него поместить меньший квадрат так,

Так вот если взять квадрат, и внутрь него поместить меньший квадрат так,
чтобы центры их совпадали, и повернуть притом меньший квадрат до соприкосновения его углов со сторонами большего квадрата, то на большей фигуре окажутся выделены сторонами меньшего квадрата 4 одинаковых прямоугольных треугольник
Отсюда уже лежит прямой путь к доказательству известной теоремы. Пусть сторону меньшего квадрата обозначим через c. Сторона большего квадрата равна a+b, и тогда его площадь равна (a+b)2=a2+2ab+b2. Ту же площадь можно определить как сумму площади меньшего квадрата и площадей 4 одинаковых прямоугольных треугольников, то есть как 4·ab/2+c2=2ab+c2. Поставим знак равенства между двумя

вычислениями одной и той же площади: a2+2ab+b2=2ab+c2. После сокращения членов 2ab получаем вывод: квадрат гипотенузы прямоугольного треугольника равен сумме квадратов катетов, то есть a2+b2=c2.

Слайд 5

Сразу не каждый поймет, какой прок от этой теоремы. С практической точки

Сразу не каждый поймет, какой прок от этой теоремы. С практической точки
зрения ее ценность состоит в служении базисом для многих геометрических вычислений, как например определения расстояния между точками координатной плоскости. Из теоремы выводятся некоторые ценные формулы, ее обобщения ведут к новым теоремам, перекидывающим мостик от вычислений на плоскости до вычислений в пространстве. Следствия теоремы проникают в теорию чисел, открывая отдельные подробности структуры ряда чисел. И многое другое, всего не перечислишь.

Слайд 6

Взгляд с точки зрения праздного любопытства демонстрирует преподношение теоремой занимательных задачек, формулируемых

Взгляд с точки зрения праздного любопытства демонстрирует преподношение теоремой занимательных задачек, формулируемых
до крайности понятно, но являющихся подчас крепкими орешками. В пример достаточно привести наиболее простую из них, так называемый вопрос о пифагоровых числах, задаваемую в бытовом изложении следующим образом: можно ли построить комнату, длина, ширина и диагональ на полу которой одновременно измерялись бы только целыми величинами, скажем шагами? Всего лишь малейшее изменение этого вопроса способно сделать задачу чрезвычайно сложной. И соответственно, найдутся желающие чисто из научного задора испытать себя в раскалывании очередного математического ребуса. Другое изменение вопроса - и еще одна головоломка. Часто в ходе поиска ответов на подобные проблемы математика эволюционирует, приобретает свежие взгляды на старые понятия, обзаводится новыми системными подходами и так далее, а значит теорема Пифагора, впрочем как и любое другое стоящее учение, с этой точки зрения имеет не меньшую пользу.

Слайд 7

Математика времен Пифагора не признавала иных чисел, кроме рациональных (натуральных чисел или

Математика времен Пифагора не признавала иных чисел, кроме рациональных (натуральных чисел или
дробей с натуральным числителем и знаменателем). Все измерялось целыми величинами или частями целых. Потому так понятно стремление делать геометрические вычисления, решать уравнения все больше в натуральных числах. Пристрастие к ним открывает путь в невероятный мир таинства чисел, ряд которых в геометрической интерпретации первоначально вырисовывается как прямая линия с бесконечным множеством отметин. Иногда зависимость между какими-то числами ряда, "линейным расстоянием" между ними, пропорцией тотчас бросается в глаза, а иной раз самые сложные мыслительные конструкции не позволяют установить, каким закономерностям подчинено распределение тех или иных чисел. Выясняется, что и в новом мире, в этой "одномерной геометрии", старые задачи сохраняют силу, меняется лишь их постановка. Как например, вариант задания о пифагоровых числах: "От дома отец делает x шагов по x сантиметров каждый, а затем идет еще у шагов по y сантиметров. За ним шагает сын z шагов по z сантиметров каждый. Какими должны быть размеры их шагов, чтобы на z-том шаге ребенок вступил в след отца?"


Имя файла: ПИФАГОРОВЫ-ШТАНЫ-НА-ВСЕ-СТОРОНЫ-РАВНЫ.pptx
Количество просмотров: 130
Количество скачиваний: 0