Слайд 2Система счисления
Система счисления — это способ представления чисел цифровыми знаками и соответствующие
ему правила действий над числами.
Системы счисления можно разделить:
непозиционные системы счисления;
позиционные системы счисления.
Слайд 3Непозиционные системы счисления
В непозиционной системе счисления значение (величина) символа (цифры) не зависит
от положения в числе.
Пример 1. У многих народов использовалась система, алфавит которой состоял из одного символа — палочки. Для изображения какого-то числа в этой системе нужно записать определенное множество палочек, равное данному числу: ||||| — число пять.
Пример 2. Самой распространенной непозиционной системой счисления является римская. Алфавит римской системы записи чисел состоит из символов: I — один, V — пять, X — десять, L — пятьдесят, C — сто, D — пятьсот, M — тысяча.
Величина числа определяется как сумма или разность цифр в числе (например, II — два, III — три, XXX — тридцать, CC — двести).
Если же большая цифра стоит перед меньшей цифрой, то они складываются (например, VII — семь),
если наоборот — вычитаются (например, IX — девять).
Слайд 4Позиционные системы счисления
В позиционных системах счисления значение (величина) цифры определяется ее положением
в числе.
Любая позиционная система счисления характеризуется своим основанием.
Основание позиционной системы счисления — количество различных цифр, используемых для изображения чисел в данной системе счисления.
Основание 10 у привычной десятичной системы счисления (десять пальцев на руках). Алфавит: 1, 2, 3, 4, 5, 6, 7, 8, 9, 0.
Основание 60 придумано в Древнем Вавилоне: деление часа на 60 минут, минуты — на 60 секунд, угла — на 360 градусов.
Основание 12 распространили англосаксы: в году 12 месяцев, в сутках два периода по 12 часов, в футе 12 дюймов.
Основание 5 широко использовалось в Китае.
За основание можно принять любое натуральное число — два, три, четыре и т.д., образовав новую позиционную систему: двоичную, троичную, четверичную и т.д.
Слайд 5Развернутая форма записи числа
Позиция цифры в числе называется разрядом.
Aq = an-1×qn-1 +
… + a1×q1 + a0×q0 + a-1×q-1 + … + a-m×q-m, где
q — основание системы счисления (количество используемых цифр)
Aq — число в системе счисления с основанием q
a — цифры многоразрядного числа Aq
n (m) — количество целых (дробных) разрядов числа Aq
Пример:
2 1 0 -1 -2
239,4510 = 2×102 + 3×101 + 9×100 + 4×10-1 + 5×10-2.
a2 a1 a0, a-1 a-2
Слайд 6Правило счета
Продвижением цифры называют замену её следующей по величине.
Продвижение старшей цифры (например,
цифры 9 в десятичной системе) означает замену её на 0.
Правило счёта: для образования целого числа, следующего за любым данным целым числом, нужно продвинуть самую правую цифру числа; если какая-либо цифра после продвижения стала нулем, то нужно продвинуть цифру, стоящую слева от неё.
Слайд 8Двоичная система счисления
Официальное «рождение» двоичной системы счисления (в её алфавите два символа:
0 и 1) связывают с именем Готфрида Вильгельма Лейбница. В 1703 г. он опубликовал статью, в которой были рассмотрены все правила выполнения арифметических действий над двоичными числами.
Преимущества:
для её реализации нужны технические устройства с двумя устойчивыми состояниями:
сеть ток — нет тока;
намагничен — не намагничен;
представление информации посредством только двух состояний надежно и помехоустойчиво;
возможно применение аппарата булевой алгебры для выполнения логических преобразований информации;
двоичная арифметика намного проще десятичной.
Недостаток:
быстрый рост числа разрядов, необходимых для записи чисел.
Слайд 9Перевод чисел (8) → (2), (16) → (2)
Перевод восьмеричных и шестнадцатеричных чисел
в двоичную систему: каждую цифру заменить эквивалентной ей двоичной триадой (тройкой цифр) или тетрадой (четверкой цифр).
Примеры:
53718 = 101 011 111 0012;
5 3 7 1
1A3F16 = 1 1010 0011 11112
1 A 3 F
Переведите:
37548 = 2
2ED16 = 2
Слайд 10Перевод чисел (2) → (8), (2) → (16)
Чтобы перевести число из двоичной
системы в восьмеричную или шестнадцатеричную, его нужно разбить влево и вправо от запятой на триады (для восьмеричной) или тетрады (для шестнадцатеричной) и каждую такую группу заменить соответствующей восьмеричной (шестнадцатеричной) цифрой.
Примеры:
11010100001112 = 1 5 2 0 78;
1 101 010 000 111
1101110000011012 = 6 E 0 D16
110 1110 0000 1101
Переведите:
10111110101011002 = 8
10110101000001102 = 16
Слайд 11Перевод чисел (q) → (10)
Запись числа в развернутой форме и вычисление полученного
выражения в десятичной системе.
Примеры:
1101102 = 1×25 + 1×24 + 0×23 + 1×22 + 1×21 + 0×20 = 5410;
2378 = 2×82 + 3×81 + 7×80 = 128 + 24 + 7 = 15910;
3FA16 = 3×162 + 15×161 + 10×160 = 768 + 240 + 10 = 101810.
Переведите:
11000110102 = 10
1628 = 10
E2316 = 10
Слайд 12Перевод чисел (10) → (q)
Последовательное целочисленное деление десятичного числа на основание системы
q, пока последнее частное не станет равным нулю.
Число в системе счисления с основанием q — последовательность остатков деления, изображенных одной q-ичной цифрой и записанных в порядке, обратном порядку их получения.
Примеры:
Переведите:
14110 = 2
14110 = 8
14110 = 16
Слайд 13Максимальное значение числа
Для записи одного и того же значения в различных системах
счисления требуется разное число позиций или разрядов:
9610 (2 разряда) = 6016 (2 разряда) = 1408 (3 разряда) = 11000002 (7 разрядов)
Чем меньше основание системы, тем больше длина числа (длина разрядной сетки).
Если длина разрядной сетки задана, то это ограничивает максимальное по абсолютному значению число, которое можно записать.
Aq(max) = qN – 1, где N — длина разрядной сетки (любое положительное число).
Пример. Если в двоичной системе счисления длина разрядной сетки N=8, то A2(max) = 28 – 1 = 255 — максимальное число, которое можно записать в этих восьми разрядах (111111112).
Слайд 15Упражнения
Во сколько раз увеличится число 10,12 при переносе запятой на один знак
вправо?
При переносе запятой на два знака вправо число 11,11x увеличилось в 4 раза. Чему равен x?
Какое минимальное основание может иметь система счисления, если в ней записано число 23?
4810 → 2.
1610 → 8.
89110 → 16.
11011110112 → 10.
2578 → 10.
Слайд 16Упражнения
7B816 → 10.
Двоичное число записано в виде многочлена:
1 × 24 + 1
× 22 + 1 × 20. Какой вид имеет число в двоичной, десятичной записи? 2 10
Сравните числа: 111012 1D16.
1111010010002 → 16.
11000011112 → 8.
4F3D16 → 2.
7138 → 2.
Составьте таблицу эквивалентов чисел от 0 до 22 для q=10 и q=6.