Презентации, доклады, проекты без категории

Презентация на тему Электроны в атоме.Химическая связь
Презентация на тему Электроны в атоме.Химическая связь
Электроны в атоме Из основного свойства заряженных тел и частиц следует, что неподвижными электроны в атоме быть не могут. Ведь в этом случае они, притянувшись к ядру, просто упали бы на него, и атом перестал бы существовать. Следовательно, электроны в атоме движутся. Но уже Резерфорду было ясно, что просто вращаться вокруг ядра электроны не могут. В то время уже были известны законы электродинамики, в соответствии с которыми вращающийся вокруг ядра электрон обязан постепенно терять свою энергию, что должно приводить в конце концов, к его падению на ядро. Эта исключительно сложная проблема хоть не всегда последовательно, но была решена в первой трети ХХ века в результате работ многих выдающихся физиков: Нильса Бора, Альберта Эйнштейна, Эрвина Шрёдингера, Вернера Гейзенберга, Макса Борна и многих других ученых. Вспомним три основные особенности поведения электронов в атоме. Первая особенность. Энергия свободного электрона, так же как и энергия тела, может изменяться непрерывно, но энергия связанного электрона, в частности электрона в атоме, может принимать только вполне определенные значения. При переходе электрона из одного состояния в другое энергия поглощается или выделяется порциями – квантами энергии. Поэтому первая особенность поведения электрона часто называется принципом квантования его энергии. Эта особенность была постулирована датским физиком Нильсом Бором в 1913 году и в дальнейшем получила блестящее экспериментальное подтверждение.
Продолжить чтение
Презентация на тему Электрический ток в вакууме. Диод.
Презентация на тему Электрический ток в вакууме. Диод.
Электрический ток в вакууме Вакуумом называется такая степень разряжения газа, при которой можно считать, что длина свободного пробега молекул превышает линейные размеры сосуда. Электрический ток в вакууме отсутствует, т.к. нет свободных носителей заряда. Ток в вакууме осуществляется за счет термоэлектронной эмиссии и представляет собой направленное движение электронов от катода к аноду. Вакуумный диод Вакуумный диод представляет собой сосуд (баллон), в котором создан высокий вакуум. В баллоне размещены два электрода — катод и анод. Катод диода нагревается до температур, при которых возникает термоэлектронная эмиссия. Термоэлектро́нная эми́ссия (эффект Ричардсона, эффект Эдисона) — явление испускания электронов нагретыми телами.
Продолжить чтение
Презентация на тему Электроемкость. Конденсаторы. Энергия электростатического поля.
Презентация на тему Электроемкость. Конденсаторы. Энергия электростатического поля.
Рассмотрим уединенный проводник, т. е. проводник, который удален от других провод­ников, тел и зарядов. Его потенциал, согласно ( ), прямо пропорционален заряду проводника. Из опыта следует, что разные проводники, будучи одинаково заряжен­ными, имеют различные потенциалы. Поэтому для уединенного проводника можно записать Величину ( 1) называют электроемкостью (или просто емкостью) уединенного проводника. Емкость уединенного проводника определяется зарядом, сообщение которого проводнику изменяет его потенциал на единицу. Емкость проводника зависит от его размеров и формы, но не зависит от материала, агрегатного состояния, формы и размеров полостей внутри проводника. Это связано с тем, что избыточные заряды распределяются на внешней поверхности проводника. Емкость не зависит также ни от заряда проводника, ни от его потенциала. Единица электроемкости — фарад (Ф): 1 Ф — емкость такого уединенного проводника, потенциал которого изменяется на 1 В при сообщении ему заряда 1 Кл. Согласно ( ), потенциал уединенного шара радиуса R, находящегося в однородной среде с диэлектрической проницаемостью ε, равен (2) Отсюда следует, что емкостью 1 Ф обладал бы уединенный шар, находящийся в ваку­уме и имеющий радиус R=C/(4πε0)≈9⋅106 км, что примерно в 1400 раз больше радиуса Земли (электроемкость Земли С≈0,7 мФ). Следовательно, фарад — очень большая величина, поэтому на практике используются дольные единицы - миллифарад (мФ), микрофарад (мкФ), нанофарад (нФ), пикофарад (пФ). Из формулы ( ) вытекает также, что единица электрической постоянной ε0 — фарад на метр (Ф/м). Как видно, для того чтобы проводник обладал большой емкостью, он должен иметь очень большие размеры. На практике, однако, необходимы устройства, обладающие способностью при малых размерах и небольших относительно окружающих тел потенциалах накапливать значительные по величине заряды, иными словами, обладать большой емкостью. Эти устройства получили название конденсаторов. Если к заряженному проводнику приближать другие тела, то на них возникают индуцированные (на проводнике) или связанные (на диэлектрике) заряды, причем ближайшими к наводящему заряду Q будут заряды противоположного знака. Эти заряды, естественно, ослабляют поле, создаваемое зарядом Q, т. е. понижают потенциал проводника, что приводит ( ) к повышению его электроемкости. Используя формулу (93.1), получим, что емкость шара
Продолжить чтение
Презентация на тему Динамика Сила тяжести и закон всемирного тяготения
Презентация на тему Динамика Сила тяжести и закон всемирного тяготения
Сила тяжести. Вес   Под действием силы притяжения все тела падают на Землю с одинаковым относительно поверхности Земли ускорением . Это означает, что в системе отсчета, связанной с Землей, на любое тело массы m действует сила называемая силой тяжести. Согласно обобщенному закону Галилея, все тела в одном и том же поле тяготения падают с одинаковым ускорением. Следовательно, в данном месте Земли ускорение свободного падения одинаково для всех тел. Оно изменяется вблизи поверхности Земли с широтой в пределах от 9,780 м/с2 на экваторе до 9,832 м/с2 на полюсах. Это обусловлено суточным вращением Земли вокруг своей оси и отличием экваториального и полярного радиусов Земли (соответственно 6378 и 6357 км). Так как различие значений g невелико, ускорение свободного падения, которое используется при решении практических задач, принимается равным 9,81 м/с2. А Землю принимают за однородный шар радиуса R. Закон всемирного тяготения Когда великие предшественники Ньютона, в частности Галилей, изучали равноускоренное движение тел, падающих на поверхность Земли, они были уверены, что наблюдают явление чисто земной природы — существующее только недалеко от поверхности нашей планеты. Когда другие ученые, например Иоганн Кеплер, изучали движение небесных тел, они полагали что в небесных сферах действуют совсем иные законы движения, нежели законы, управляющие движением здесь, на Земле. Все аргументы, касающиеся движения небесных тел, до Ньютона сводились в основном к тому, что небесные тела, будучи совершенными, движутся по круговым орбитам в силу своего совершенства, поскольку окружность — суть идеальная геометрическая фигура. Таким образом, выражаясь современным языком, считалось, что имеются два типа гравитации, и это представление устойчиво закрепилось в сознании людей того времени. Все считали, что есть земная гравитация, действующая на несовершенной Земле, и есть гравитация небесная, действующая на совершенных небесах.
Продолжить чтение
Презентация на тему Электрический ток в электролитах
Презентация на тему Электрический ток в электролитах
Электролиты Проводниками электрического тока являются не только металлы и полупроводники. Электрический ток проводят растворы многих веществ в воде. Как показывает опыт, чистая вода не проводит электрический ток, то есть в ней нет свободных носителей электрических зарядов. Не проводят электрический ток и кристаллы поваренной соли, хлорида натрия. Однако раствор хлорида натрия является хорошим проводником электрического тока. Растворы солей, кислот и оснований, способные проводить электрический ток, называются электролитами. Электролиз Прохождение электрического тока через электролит обязательно сопровождается выделением вещества в твёрдом или газообразном состоянии на поверхности электродов. Выделение вещества на электродах показывает, что в электролитах электрические заряды переносят заряженные атомы вещества – ионы. Этот процесс называется электролизом.
Продолжить чтение
Презентация на тему Динамика Законы сохранения энергии и импульса
Презентация на тему Динамика Законы сохранения энергии и импульса
Физический смысл закона сохранения энергии. Закон сохранения энергии утверждает, что существует определенная величина, называемая энергией, которая не меняется ни при каких превращениях, происходящих в природе. Само это утверждение весьма и весьма отвлеченно; это по существу математический принцип, утверждающий, что существует некоторая численная величина, которая не изменяется ни при каких обстоятельствах. Это отнюдь не описание механизма явления или чего-то конкретного, просто-напросто отмечается то странное обстоятельство, что можно подсчитать какое-то число и затем спокойно следить, как природа будет выкидывать любые свои трюки, а потом опять подсчитать это число — и оно останется прежним. (Ну, все равно, как слон на черном шахматном поле: как бы ни разворачивались события на доске, какие бы ходы ни делались, слон все равно окажется на черном поле. Наш закон как раз такого типа.) И поскольку утверждение это отвлеченно, то мы выявим его смысл на некоторой аналогии. Познакомимся с мальчиком по имени Петя; у него есть кубики, которые даже он не может ни сломать, ни разделить на части. Все они одинаковы. Пускай их у него 28 штук. Мама оставляет его утром дома наедине с этими кубиками. Каждый вечер она подсчитывает, сколько у него кубиков,— она немного любопытна!— и открывает поразительную закономерность: что бы ее сынишка ни вытворял с кубиками, их все равно оказывается 28! Так это тянется довольно долго, и вдруг в один прекрасный день она насчитывает только 27 штук. После недолгих поисков кубик обнаруживают под ковром: ей приходится все обыскать, чтобы убедиться в неизменности числа кубиков. В другой раз кубиков оказывается 26. Снова тщательное исследование показывает, что окно отворено; взглянув вниз, она видит два кубика в траве. В третий раз подсчет дает 30 кубиков! Это приводит маму в полное замешательство, но потом она вспоминает, что в гости приходил соседский мальчик, видимо, он захватил с собой свои кубики и позабыл их здесь.
Продолжить чтение
Презентация на тему Динамика материальной точки. Работа и энергия
Презентация на тему Динамика материальной точки. Работа и энергия
2. Динамика материальной точки «Всякая материальная точка (тело) сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока воздействие со стороны других тел не заставит ее изменить это состояние». 2.1. Законы Ньютона Стремление тела сохранять состояние покоя или равномерного прямолинейного движения называется инертностью. Первый закон Ньютона выполняется только в инерциальных системах отсчета. Инерциальная система отсчета – это система, относительно которой материальная точка, свободная от внешних воздействий, либо покоится, либо движется равномерно и прямолинейно. Первый закон Ньютона: Масса тела — физическая величина, являющаяся одной из основных характеристик материи, определяющая ее инерционные и гравитационные свойства. Мера инертности тела – это его масса. Сила — это векторная величина, являющаяся мерой механического воздействия на тело со стороны других тел или полей, в результате которого тело приобретает ускорение или изменяет свою форму и размеры. Второй закон Ньютона Второй закон Ньютона — основной закон динамики поступательного движения: «Ускорение, с которым движется тело, прямопропорционально силе, действующей на тело, и обратнопропорционально массе тела».
Продолжить чтение
Презентация на тему Динамика Сила тяжести и вес работа энергии
Презентация на тему Динамика Сила тяжести и вес работа энергии
Сила тяжести и вес с точки зрения теории тяготения Если пренебречь суточным вращением Земли вокруг своей оси, то сила тяжести Р и сила гравитационного тяготения F равны между собой: где М  масса Земли, R  расстояние между телом и центром Земли, G  гравитационная постоянная. Пусть тело находится на высоте h от поверхности Земли, тогда т. е. сила тяжести Р(h) с удалением от поверхности Земли уменьшается. Из последних соотношений получаем зависимость ускорения свободного падения от высоты h от поверхности Земли: где gо – ускорение свободного падения у поверхности Земли. В физике применяется также понятие веса тела. Весом тела называют силу, с которой тело действует на опору (или подвес), удерживающую тело от свободного падения. То есть вес тела действует не на само тело, а на другое тело, удерживающее его. Таким образом, сила тяжести действует всегда, а вес тела проявляется только в том случае, когда на тело кроме силы тяжести действуют еще другие силы. Например, тела, находящиеся в космических кораблях, свободно движущихся в космосе, являются невесомыми, их вес равен нулю. Сила тяжести равна весу только тогда, когда ускорение тела относительно Земли равно нулю.
Продолжить чтение