prezentatsia_lektsia_1_LF_Rastvory_Kolligativnye_svoi_774_stva_rastvorov_Osmos

Содержание

Слайд 2

ПЛАН ЛЕКЦИИ:

Растворы, классификация, коллигативные свойства. Закон Рауля и следствия из него.
Диффузия.

ПЛАН ЛЕКЦИИ: Растворы, классификация, коллигативные свойства. Закон Рауля и следствия из него.
Осмос. Осмотическое давление: закон Вант-Гоффа.
Растворы электролитов. Изотонический коэффициент.
Гипо-, гипер- и изотонические растворы. Осмомоляльность и осмомолярность биологических жидкостей и перфузионных растворов. Изоосмия.

Слайд 3

1. Растворы, классификация, коллигативные свойства. Закон Рауля и следствия из него

1. Растворы, классификация, коллигативные свойства. Закон Рауля и следствия из него

Слайд 4

РАСТВОРЫ

Дисперсные системы – системы, в которых одно вещество равномерно распределено в виде

РАСТВОРЫ Дисперсные системы – системы, в которых одно вещество равномерно распределено в
частиц внутри другого вещества.
Дисперсность – раздробленность, величина обратная размеру частиц растворенного вещества.

Слайд 5

В дисперсных системах различают:
дисперсную фазу – мелкораздробленное вещество;
дисперсионную среду – однородное

В дисперсных системах различают: дисперсную фазу – мелкораздробленное вещество; дисперсионную среду –
вещество, в котором распределена дисперсная фаза.

Слайд 6

КЛАССИФИКАЦИЯ РАСТВОРОВ

По агрегатному состоянию компонентов: – газообразные (воздух); – жидкие; – твердые (сплавы);
По степени

КЛАССИФИКАЦИЯ РАСТВОРОВ По агрегатному состоянию компонентов: – газообразные (воздух); – жидкие; –
дисперсности (размеру частиц дисперсной фазы): – ионо- и молекулярнодисперсные; – коллоидные; – грубодисперсные.

Слайд 7

По степени дисперсности смеси веществ условно делят на:
1. Истинные растворы (ионо-

По степени дисперсности смеси веществ условно делят на: 1. Истинные растворы (ионо-
и молекулярнодисперсные) (размер частиц меньше 1 нм, т.е. определяется размером ионов, молекул, ионных пар);
2. Коллоидные растворы (размер частиц 1-500 нм);
3. Грубодисперсные или механические смеси (размер частиц от 1000 нм и более).
.

Слайд 8

III. По содержанию растворенного вещества:
– насыщенные (растворы, в которых при данных условиях

III. По содержанию растворенного вещества: – насыщенные (растворы, в которых при данных
невозможно растворить еще какое-либо количество вещества);
– ненасыщенные растворы делятся на:
1. Разбавленные (доля растворенного вещества очень мала по сравнению с растворителем);
2. Концентрированные (доля растворенного вещества в растворе велика).

Слайд 9

IV. По поведению веществ в растворах:
– растворы электролитов, веществ, молекулы которых

IV. По поведению веществ в растворах: – растворы электролитов, веществ, молекулы которых
диссоциируют на ионы (проводят электрический ток);
– растворы неэлектролитов, веществ, молекулы которых не диссоциируют на ионы (не проводят электрический ток).

Слайд 10

КОЛЛИГАТИВНЫЕ СВОЙСТВА РАСТВОРОВ – это

свойства растворов, зависящие от концентрации компонентов, но

КОЛЛИГАТИВНЫЕ СВОЙСТВА РАСТВОРОВ – это свойства растворов, зависящие от концентрации компонентов, но
не зависящие от их природы:
1. Понижение давления насыщенного пара над раствором по сравнению с растворителем;
2. Повышение температуры кипения и понижение температуры замерзания (кристаллизации) растворов по сравнению с растворителем;
3. Осмотические явления.

Слайд 11

ДАВЛЕНИЕ НАСЫЩЕННОГО ПАРА. ЗАКОН РАУЛЯ

Пар, находящийся в динамическом равновесии с жидкостью называется

ДАВЛЕНИЕ НАСЫЩЕННОГО ПАРА. ЗАКОН РАУЛЯ Пар, находящийся в динамическом равновесии с жидкостью
насыщенным и характеризуется давлением (P) (Па, атм.), (упругость пара).
Давление насыщенного пара зависит от:
– природы жидкости;
– температуры, с ростом которой давление возрастает.

Слайд 12

Добавление в растворитель растворенного вещества (нелетучего неэлектролита) приводит к снижению пара растворителя

Добавление в растворитель растворенного вещества (нелетучего неэлектролита) приводит к снижению пара растворителя
над раствором по сравнению с давлением насыщенного пара над чистым растворителем и связано с уменьшением количества свободных молекул растворителя на поверхности жидкости.

Слайд 14

Закон Рауля

Молекулы нелетучего растворенного компонента раствора препятствуют улетучиванию из раствора молекул растворителя.

Закон Рауля Молекулы нелетучего растворенного компонента раствора препятствуют улетучиванию из раствора молекул

Понижение давления насыщенного пара растворителя над раствором пропорционально молярной доле растворенного нелетучего вещества.

Слайд 16

Следствия из закона Рауля

Повышение температуры кипения ∆Ткип и понижение температуры замерзания ∆Тзам,

Следствия из закона Рауля Повышение температуры кипения ∆Ткип и понижение температуры замерзания
разбавленных растворов неэлектролитов прямо пропорционально моляльной концентрации раствора Сm:
∆ Ткип = Кэ×Сm;
∆ Тзам = Кк×Сm.

Слайд 17

Кэ – эбулиоскопическая постоянная растворителя (численно равна повышению температуры кипения одномоляльного раствора); Кк

Кэ – эбулиоскопическая постоянная растворителя (численно равна повышению температуры кипения одномоляльного раствора);
– криоскопическая постоянная растворителя (равна понижению температуры замерзания одномоляльного раствора).

Слайд 18

Кэ и Кк
зависят от природы растворителя не зависят от природы растворенного

Кэ и Кк зависят от природы растворителя не зависят от природы растворенного
вещества (идеальные растворы)
Для воды: Кэ = 1,86; Кк = 0,52,

Слайд 20

2. Растворы электролитов. Изотонический коэффициент

2. Растворы электролитов. Изотонический коэффициент

Слайд 21

РАСТВОРЫ ЭЛЕКТРОЛИТОВ

При равных концентрациях растворов давление насыщенного пара растворителя над раствором электролита

РАСТВОРЫ ЭЛЕКТРОЛИТОВ При равных концентрациях растворов давление насыщенного пара растворителя над раствором
ниже, чем над раствором неэлектролита той же концентрации. Диссоциация увеличивает общее число частиц растворенного вещества.

Слайд 22

Изотонический коэффициент i (коэффициент Вант-Гоффа), связан со степенью диссоциации электролита ά следующим

Изотонический коэффициент i (коэффициент Вант-Гоффа), связан со степенью диссоциации электролита ά следующим
соотношением:
i = 1 + α × (n – 1),
где n – число ионов, на которые при диссоциации распадается
электролит.
ΔТкип = i ×Кэ × Сm;
ΔТзам = i × Кк × Сm;
Росм = i × R × T × Cm.

Слайд 23

3. Осмос. Осмотическое давление

3. Осмос. Осмотическое давление

Слайд 24

ОСМОС –

процесс преимущественно одностороннего проникновения молекул растворителя через полупроницаемую мембрану.

ОСМОС – процесс преимущественно одностороннего проникновения молекул растворителя через полупроницаемую мембрану.

Слайд 25

ОСМОТИЧЕСКОЕ ДАВЛЕНИЕ –

дополнительное гидростатическое давление, при котором осмос прекращается.

ОСМОТИЧЕСКОЕ ДАВЛЕНИЕ – дополнительное гидростатическое давление, при котором осмос прекращается.

Слайд 26

ЗАКОН ВАНТ-ГОФФА:

Осмотическое давление (Росм или π) разбавленных растворов неэлектролитов прямо пропорционально молярной

ЗАКОН ВАНТ-ГОФФА: Осмотическое давление (Росм или π) разбавленных растворов неэлектролитов прямо пропорционально
концентрации раствора и абсолютной температуре:
Росм = С×R×T,
где С – молярная концентрация раствора, моль/м3;
R – газовая постоянная (8,314 Дж/(моль×К);
Т – абсолютная температура (К).

Слайд 27

4. Гипо-, гипер- и изотонические растворы. Осмомоляльность и осмомолярность биологических жидкостей и

4. Гипо-, гипер- и изотонические растворы. Осмомоляльность и осмомолярность биологических жидкостей и перфузионных растворов. Изоосмия
перфузионных растворов. Изоосмия

Слайд 28

ИЗОТОНИЧЕСКИЕ РАСТВОРЫ – растворы с одинаковым осмотическим давлением.
ГИПЕРТОНИЧЕСКИЙ раствор имеет большее

ИЗОТОНИЧЕСКИЕ РАСТВОРЫ – растворы с одинаковым осмотическим давлением. ГИПЕРТОНИЧЕСКИЙ раствор имеет большее
осмотическое давление,
ГИПОТОНИЧЕСКИЙ – меньшее.

Слайд 30

Осмотическое давление крови человека имеет осмолярную концентрацию 0,29-0,30 моль/л.
Изотонические (физиологические) растворы характеризуются

Осмотическое давление крови человека имеет осмолярную концентрацию 0,29-0,30 моль/л. Изотонические (физиологические) растворы
осмотическим давлением, равным давлению плазмы крови
(0,9 % раствор NаСI (0,15 моль/л) и 5 % раствор глюкозы (0,3 моль/л).

Слайд 31

Эндоосмос – движение растворителя в осмотическую ячейку из окружающей среды.
Экзоосмос – движение

Эндоосмос – движение растворителя в осмотическую ячейку из окружающей среды. Экзоосмос –
растворителя из осмотической ячейки в окружающую среду.

Слайд 32

Вследствие экзоосмоса эритроциты обезвоживаются и сморщиваются – плазмолиз.
Вследствие эндоосмоса наблюдается «осмотический шок»

Вследствие экзоосмоса эритроциты обезвоживаются и сморщиваются – плазмолиз. Вследствие эндоосмоса наблюдается «осмотический
и может произойти разрыв эритроцитарных оболочек – гемолиз.

Слайд 34

Осмолярность – осмотическое давление раствора, определяющееся суммарной концентрацией кинетически активных частиц в

Осмолярность – осмотическое давление раствора, определяющееся суммарной концентрацией кинетически активных частиц в единице объема раствора (мОсм/л).
единице объема раствора (мОсм/л).

Слайд 36

Осмоляльность – концентрация осмотически активных частиц в растворе, выраженная количеством осмолей на

Осмоляльность – концентрация осмотически активных частиц в растворе, выраженная количеством осмолей на
килограмм растворителя.
Осмоль – молекулярный вес вещества, разделенный на число ионов или частиц, образующихся при растворении вещества.

Слайд 37

Осмоляльность плазмы крови – важнейшая константа организма человека, колеблется в незначительных пределах

Осмоляльность плазмы крови – важнейшая константа организма человека, колеблется в незначительных пределах
(255-295 ммоль/л), зависит в основном от концентрации в крови ионов натрия, глюкозы и мочевины.

Слайд 38

Изоосмия – постоянство осмотического давления.
Осмотическое давление биологических жидкостей человека довольно постоянно

Изоосмия – постоянство осмотического давления. Осмотическое давление биологических жидкостей человека довольно постоянно
и составляет 740-780 кПа (7,4-7,8 атм) при 37 °С.
Обусловлено ионами неорганических солей, в меньшей степени коллоидными частицами и молекулами белков.

Слайд 39

Онкотическое давление – осмотическое давление, создаваемое молекулами белков в биожидкостях организма
(2,5-4,0

Онкотическое давление – осмотическое давление, создаваемое молекулами белков в биожидкостях организма (2,5-4,0
кПа).
Обеспечивает обмен воды между кровью и тканями, распределяя ее между сосудистым руслом и внесосудистым пространством.

Слайд 40

Гидростатическое давление крови падает от артериальной части кровеносной системы к венозной.

Гидростатическое давление крови падает от артериальной части кровеносной системы к венозной.

Слайд 41

Перфузионные растворы применяют при пересадке для хранения органов и тканей.
Плазмозаменители – препараты

Перфузионные растворы применяют при пересадке для хранения органов и тканей. Плазмозаменители –
для парентерального питания, на основе декстрана, поливинилпирролидона, желатина и солевых растворов.