Исследование корреляции

Содержание

Слайд 2

Корреляция – это зависимость между двумя случайными величинами.

Корреляция
Между различными явлениями существуют

Корреляция – это зависимость между двумя случайными величинами. Корреляция Между различными явлениями
сложные и многообразные связи. Их можно классифицировать.
В технике и естествознании часто говорят о функциональной зависимости. Например скорость выведения лекарственного вещества из организма.
Однако, многие явления происходят при воздействии многочисленных факторов, в этом случае, связь теряет свою строгую функциональность.
В результате, одна случайная переменная реагирует на изменения другой переменой изменением своего закона распределения.

Слайд 3

Изучение статистических зависимостей основывается на исследовании таких связей между случайными переменными, при

Изучение статистических зависимостей основывается на исследовании таких связей между случайными переменными, при
которых значение одной изменяется в зависимости от того, какие значения принимает другая.
Так как понятие статистической зависимости относится к осредненным условиям , прогнозы не могут быть безошибочными. Применяя некоторые вероятностные методы , можно вычислить вероятность того, что ошибка прогноза не выйдет за определенные границы.
В исследованиях между изучаемыми признаками чаще всего наблюдаются корреляционные взаимосвязи. (Связь роста с весом, прыжки в длину и бег на короткие дистанции).

Слайд 4

Виды взаимосвязи

Виды взаимосвязи

Слайд 5

функциональная взаимосвязь

Функциональной называется взаимосвязь, при которой каждому значению одного показателя соответствует

функциональная взаимосвязь Функциональной называется взаимосвязь, при которой каждому значению одного показателя соответствует строго определенное значение другого.
строго определенное значение другого.

Слайд 6

Статистическая взаимосвязь

Статистической взаимосвязью называется взаимосвязь, при которой одному значению первого показателя может

Статистическая взаимосвязь Статистической взаимосвязью называется взаимосвязь, при которой одному значению первого показателя
соответствовать несколько значений второго показателя.

Слайд 7

Корреляционный анализ

Корреляционный анализ состоит в определении степени связи между двумя случайными величинами

Корреляционный анализ Корреляционный анализ состоит в определении степени связи между двумя случайными величинами (Y и X).
(Y и X).

Слайд 8

Основные задачи корреляционного анализа

определение формы связи (линейная, нелинейная);
определение направления связи

Основные задачи корреляционного анализа определение формы связи (линейная, нелинейная); определение направления связи
(положительная связь или отрицательная);
определение степени или тесноты взаимосвязи (слабая, средняя, сильная).

Слайд 9

Форма зависимости

Форма зависимости

Слайд 10

Форма зависимости

Форма зависимости

Слайд 11

Направленность взаимосвязи

Направленность взаимосвязи

Слайд 12

Направленность взаимосвязи

Направленность взаимосвязи

Слайд 13

Теснота (сила) взаимосвязи

Теснота (сила) взаимосвязи

Слайд 14

Диапазон коэффициента корреляции

.

-1 ≤ r ≤ 1

Диапазон коэффициента корреляции . -1 ≤ r ≤ 1

Слайд 15

Построение корелляционного поля

Пару случайных чисел x и y,представляющих собой результаты измерения спортивных

Построение корелляционного поля Пару случайных чисел x и y,представляющих собой результаты измерения
результатов, можно изобразить графически в прямоугольной системе координат в виде совокупности точек с координатами x, y. Множество этих точек образуют графическую зависимость, называемую корреляционным полем или диаграммой рассеивания.
Визуальный анализ графика позволяет выявить как форму, так и направленность и силу взаимосвязи.
Корреляционное поле необходимо обвести по краю и рассмотреть полученную фигуру, если обведенный ареал напоминает эллипс, то речь идет о линейной зависимости.
Далее производится анализ графика, если эллипс узкий, то зависимость сильная. По графику можно увидеть положительную или отрицательную направленность.

Слайд 16

Корреляционные поля

Корреляционные поля

Слайд 17

Критерии оценки силы взаимосвязи в корреляции

(функциональная зависимость)

(сильная зависимость)

(зависимости нет)

(очень слабая зависимость)

(слабая

Критерии оценки силы взаимосвязи в корреляции (функциональная зависимость) (сильная зависимость) (зависимости нет)
зависимость)

(средняя зависимость)

Слайд 18

Коэффициент детерминации

Коэффициент детерминации (R²) -величина квадрата коэффициента корреляции.

Величина R² показывает долю

Коэффициент детерминации Коэффициент детерминации (R²) -величина квадрата коэффициента корреляции. Величина R² показывает
(%) части варьирования одного из признаков, связанную с варьированием другого

Слайд 19

Коэффициент корреляции Браве-Пирсона

Коэффициент корреляции Браве-Пирсона

Слайд 20

Вычисление коэффициента корреляции Браве-Пирсона

Вычисление коэффициента корреляции Браве-Пирсона

Слайд 21

Этапы проверки гипотезы

1. Задаются уровнем значимости α=0,05.
2. Формулируют гипотезы Н0: r=0

Этапы проверки гипотезы 1. Задаются уровнем значимости α=0,05. 2. Формулируют гипотезы Н0:
Н1: r≠0
3. Рассчитывают эмпирическое значение t критерия Стьюдента
4. Определяют критическое значение критерия tкр
5. Сравнивают эмпирическое значение критерия с критическим

Слайд 22

Пример исследования корреляции

Результаты метания диска и толкания ядра

Пример исследования корреляции Результаты метания диска и толкания ядра

Слайд 23

Корреляционное поле

Рис. 6. Корреляционное поле

Корреляционное поле Рис. 6. Корреляционное поле

Слайд 25

Вычисление суммы значений xi и yi

Вычисление суммы значений xi и yi

Слайд 26

Определение средних значений признаков xi и yi

Определение средних значений признаков xi и yi

Слайд 27

Соответствующие суммы

Соответствующие суммы

Слайд 28

Значение коэффициента корреляции Браве-Пирсона

Значение коэффициента корреляции Браве-Пирсона

Слайд 29

Коэффициент корреляции лежит в интервале , поэтому можно сделать предположение о том,

Коэффициент корреляции лежит в интервале , поэтому можно сделать предположение о том,
что между результатами, показанными спортсменами в метании диска, и результатами, показанными ими в толкании ядра, существует линейная положительная сильная статистическая взаимосвязь.

Слайд 30

Коэффициент детерминации

Таким образом, 70% взаимосвязи между двумя наборами данных объясняется их

Коэффициент детерминации Таким образом, 70% взаимосвязи между двумя наборами данных объясняется их
взаимовлиянием. Остальная часть вариации обусловлена воздействием других неучтенных причин.

Слайд 31

Вывод о статистической значимости коэффициента корреляции

Между результатами, показанными спортсменами в метании

Вывод о статистической значимости коэффициента корреляции Между результатами, показанными спортсменами в метании
диска, и результатами, показанными ими в толкании ядра, существует значимая положительная взаимосвязь.

Слайд 32

Коэффициенты вариации

Поскольку коэффициент вариации у результатов в метании диска больше, чем

Коэффициенты вариации Поскольку коэффициент вариации у результатов в метании диска больше, чем
у результатов в толкании ядра, то этот признак варьирует сильнее

Слайд 33

Находим x и y
Заполняем таблицу
Находим
Находим

Алгоритм №1 вычисления коэффициента корреляции

Находим x и y Заполняем таблицу Находим Находим Алгоритм №1 вычисления коэффициента корреляции

Слайд 34

5. Проверка значимости выборочного коэффициента корреляции

Вычислить наблюдаемое значение критерия

Сравнить числа

5. Проверка значимости выборочного коэффициента корреляции Вычислить наблюдаемое значение критерия Сравнить числа
|Тнабл| и Tкрит :
если |Тнабл| < Tкрит , то принять гипотезу H0;
если |Тнабл| > Tкрит то гипотеза H0 отвергается

Слайд 35

6. Коэффициент детерминации

6. Коэффициент детерминации

Слайд 36

Вспомогательная таблица для расчета коэффициента корреляции

Вспомогательная таблица для расчета коэффициента корреляции

Слайд 37

Алгоритм №2 вычисления коэффициента корреляции
Находим x и y
Заполняем таблицу
Находим ;
Находим

Алгоритм №2 вычисления коэффициента корреляции Находим x и y Заполняем таблицу Находим ; Находим

Слайд 38

Находим выборочный корреляционный момент:
Находим выборочный коэффициент корреляции:

Находим выборочный корреляционный момент: Находим выборочный коэффициент корреляции:

Слайд 39

7. Найти оценки параметров линейной регрессии по выборке. 8. Изобразить заданные точки

7. Найти оценки параметров линейной регрессии по выборке. 8. Изобразить заданные точки
и прямую регрессии. Уравнение искомой прямой
Имя файла: Исследование-корреляции.pptx
Количество просмотров: 56
Количество скачиваний: 0