Решение системы линейных уравнений. Методы решения системы линейных уравнений

Слайд 2

Методы решения системы линейных уравнений

Метод обратной матрицы
1. Для нахождения решений системы методом

Методы решения системы линейных уравнений Метод обратной матрицы 1. Для нахождения решений
обратной матрицы надо
умножить обратную матрицу на столбец свободных членов (предварительно
выбрав массив ячеек для столбца решений).
2. Для вычисления обратной матрицы используйте функцию
МОБР(диапазон исходной матрицы).

Слайд 3

Методы решения системы линейных уравнений

Метод Крамера
1. Для решения системы линейных уравнений методом

Методы решения системы линейных уравнений Метод Крамера 1. Для решения системы линейных
Крамера,
нужно найти определитель матрицы исходного уравнения (D), а также
определители новых матриц (d1, d2, d3), которые получаются путем замены
1-го, 2-го и 3-го столбцов (по-очереди) исходной матрицы столбцом
свободных членов исходной системы уравнений.
2. Для нахождения решений используйте формулу: xk = dk / D, где dk
– определитель, получающийся из определителя D при замене k-го столбца
соответствующими свободными членами, т.е., к примеру, x1 = d1 / D, где d1
– определитель матрицы с замененным 1-ым столбцом исходной матрицы
столбцом свободных членов.

Проверка показывает, что решение найдено правильно

Слайд 4

Методы решения системы линейных уравнений

Метод Гаусса
Метод Гаусса основан на том, чтобы при

Методы решения системы линейных уравнений Метод Гаусса Метод Гаусса основан на том,
помощи эквивалентных
преобразований получить трапециевидную систему уравнений (у которой в
левой нижней части остаются единицы по диагонали, а остальные – нули, см.
пример), поэтому от исходной матрицы нужно получить новую. Будем делать
это поэтапно.

6х1-6х2+2х3+8х4=12
2х1+2х2-х3+4х4=13
8х1+6х2+4х3-2х4=5
-3х1+х2+7х3-4х4=56

Слайд 5

Шаг 1. Деление элементов первой строки на коэффициент при Х1.
Шаг 2. Вычитание

Шаг 1. Деление элементов первой строки на коэффициент при Х1. Шаг 2.
значений первой строки из последующих строк
Шаг 3. Деление элементов второй строки на коэффициент при Х2
Шаг 4. Вычитание значений второй строки из последующих строк
Шаг 5. Деление элементов третьей строки на коэффициент при Х3
Шаг 6. Вычитание значений третьей строки из значений четвертой строки

Слайд 6

Шаг 5. Деление элементов третьей строки на коэффициент при Х3
Шаг последний. Вычисление

Шаг 5. Деление элементов третьей строки на коэффициент при Х3 Шаг последний. Вычисление значений неизвестных
значений неизвестных
Имя файла: Решение-системы-линейных-уравнений.-Методы-решения-системы-линейных-уравнений.pptx
Количество просмотров: 38
Количество скачиваний: 0