Случайные величины и их распределения

Содержание

Слайд 2

§3.1. Случайные величины

Случайной величиной называется величина (Х), которая в результате опыта может

§3.1. Случайные величины Случайной величиной называется величина (Х), которая в результате опыта
принимать одно из значений х1, х2,…, хi,…, хn, образующих полную группу несовместных событий, причем неизвестно заранее, какое именно.
Х= хi; Р(Х= хi)= рi
Дискретной (не непрерывной) случайной величиной называют случайную величину Х, которая принимает отдельные, изолированные возможные значения хi с определенными вероятностями рi.

Слайд 3

Законом распределения случайной величины Х называется совокупность пар чисел (хi, рi), где

Законом распределения случайной величины Х называется совокупность пар чисел (хi, рi), где
хi – возможные значения случайной величины, рi – вероятности, с которыми она принимает эти значения. При этом

Слайд 4

Пример:

Пример:

Слайд 5

Многоугольник распределения

Многоугольник распределения

Слайд 6

Непрерывной называют случайную величину, которая может принимать все значения из некоторого конечного

Непрерывной называют случайную величину, которая может принимать все значения из некоторого конечного
или бесконечного промежутка. Число возможных значений случайной непрерывной величины бесконечно.
Числовая функция Х(ω) называется случайной величиной, если для любого ее возможного значения хi ∈ Ω = (-∞<хi<∞), где множество Ω есть множество элементарных событий ω, определена вероятность Р{X(ω)

Слайд 7

§3.2. Числовые характеристики случайной внличины
В теории вероятностей числовые характеристики условно можно разделить

§3.2. Числовые характеристики случайной внличины В теории вероятностей числовые характеристики условно можно
на две группы:
– характеристики положения;
– характеристики рассеивания и вероятностных взаимодействий.

Слайд 8

§3.2.1. Характеристики положения

Математическое ожидание, мода и медиана.
N независимых испытаний; СВ принимает определенные

§3.2.1. Характеристики положения Математическое ожидание, мода и медиана. N независимых испытаний; СВ
значения х1, х2,…, хi,…, хn.
Причем, х1 благоприятствовали m1 случаев, х2 - m2 случаев, далее хn - mn случаев.
Арифметическое значений СВ Х обозначим через М[X]:
М[X]=
где

Слайд 9

Если ряд сходится абсолютно и
, то М[X]=
Для дискретной СВ М[X]=
Для

Если ряд сходится абсолютно и , то М[X]= Для дискретной СВ М[X]=
непрерывной СВ М[X]=
Свойства МО СВ:
1. М[C]=C;
2. M[CX]=CM[X];
3. M[X1+X2+… +Xn]= M[X1]+M[X2]+…+ M[Xn];
4. M[X1X2… Xn]= M[X1]M[X2]… M[Xn].

Слайд 10

Кроме МО вводят такие характеристики, как мода (Мо) и медиана (Ме).
Модой дискретной

Кроме МО вводят такие характеристики, как мода (Мо) и медиана (Ме). Модой
СВ называется ее наиболее вероятное значение(рис.1).
Рис.1

Слайд 11

Модой непрерывной СВ называется ее значение, при котором плотность вероятности принимает максимальное

Модой непрерывной СВ называется ее значение, при котором плотность вероятности принимает максимальное Рис.2 значение (рис.2).
Рис.2 значение (рис.2).

Слайд 12

Медианой СВ называется такое ее значение Ме, для которого P(X =P(X>Me)=0,5
(рис.3).
Рис.3
Симметричное распределение:

Медианой СВ называется такое ее значение Ме, для которого P(X =P(X>Me)=0,5 (рис.3). Рис.3 Симметричное распределение: M[X]=Mo=Me
M[X]=Mo=Me

Слайд 13

§3.2.2. Характеристики рассеивания и взаимодействия

Моменты двух видов: начальные и центральные.
Начальным моментом

§3.2.2. Характеристики рассеивания и взаимодействия Моменты двух видов: начальные и центральные. Начальным
k-го порядка αk[X] СВ Х называется МО k-ой степени от этой СВ, т.е. αk[X]=M[Xk].
Для дискретной СВ: αk[X]=
Для непрерывной СВ: αk[X]=

Слайд 14

Центрированной СВ Х°, соответствующей СВ Х, называется отклонение СВ от ее МО

Центрированной СВ Х°, соответствующей СВ Х, называется отклонение СВ от ее МО
M[X]=m, т.е. Х°=Х-m.
M[X°]=0.
Для дискретной СВ Х: M[X°]=M[X-m]=
=
Центральным моментом k-го порядка μk[X] СВ Х называется МО k-ой степени центрированной СВ X°, т.е. μk[X]= M[(X°)k]=M[(X-m)k].

Слайд 15

Для дискретной СВ Х: μk[X]=
Для непрерывной СВ Х: μk[X]=
=
μ1[X]=M[X°]= M[X-m]=0.

Для дискретной СВ Х: μk[X]= Для непрерывной СВ Х: μk[X]= = μ1[X]=M[X°]=

μ2[X]= M[(X°)2]=M[(X-m)2]= =
=

Слайд 16

μ2[X]=D[X]=Dx=σ2 .
Для дискретной СВ:D[X]= M[(X°)2]= M[(X-
-m)2]=
Для непрерывной СВ: D[X]=
=
Среднее

μ2[X]=D[X]=Dx=σ2 . Для дискретной СВ:D[X]= M[(X°)2]= M[(X- -m)2]= Для непрерывной СВ: D[X]=
квадратическое или стандартное отклонение СВ σ: σ=

Слайд 17

Свойства дисперсии: D[X]≥0. При Х=С : D[С]=0. D[СX]=С2D[X]. D[X1+X2+… +Xn]= D[X1] + D[Х2]

Свойства дисперсии: D[X]≥0. При Х=С : D[С]=0. D[СX]=С2D[X]. D[X1+X2+… +Xn]= D[X1] +
+ …+ D[Хn]. D[С+Х]= D[Х]. D[Х-Y]= D[Х]+D[Y]. D[Х+Y]= D[Х]+D[Y]+2K(x,y).

Слайд 18

Коэффициент асимметрии А=
Рис.4

Коэффициент асимметрии А= Рис.4
Имя файла: Случайные-величины-и-их-распределения.pptx
Количество просмотров: 119
Количество скачиваний: 0