Slaidy.com
Алгебра
Английский язык
Астрономия
Биология
География
Геометрия
Информатика
История
Литература
Математика
Медицина
Музыка
МХК
ОБЖ
Обществознание
Педагогика
Немецкий язык
Русский язык
Технология
Физика
Философия
Химия
Экология
Экономика
Детские презентации
Шаблоны презентаций
Разное
Культурология
Окружающий мир
Таблица для мешка по двум признакам
Март 3, 2021
Главная
Математика
Таблица для мешка по двум признакам
Содержание
7.
2 1 2 1
8.
2 1 2 1 0 2 1 1 3 0 1 0 2 2 3 2
10.
Проверьте себя 3 2 3 0 0 3 2 1 0 2 0 2 2 2
12.
и л и л Проверьте себя
15.
Проверьте себя
17.
Проверьте себя с с кр ж ж с кр ж
19.
Скачать презентацию
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
2
1
2
1
Слайд 8
2
1
2
1
0 2 1 1
3 0 1 0
2 2 3
2
1 2 0 2
Проверьте себя
Слайд 9
Слайд 10
Проверьте себя
3 2 3 0
0 3 2 1
0 2 0
2 2
2 3 2 1 1
3 1 2 0 3
Слайд 11
Слайд 12
и
л
и
л
Проверьте себя
Слайд 13
Слайд 14
Слайд 15
Проверьте себя
Слайд 16
Слайд 17
Проверьте себя
с
с
кр
ж
ж
с
кр
ж
Имя файла: Таблица-для-мешка-по-двум-признакам.pptx
Количество просмотров: 106
Количество скачиваний: 0
Скачать
- Предыдущая
Признаки параллельности прямых
Следующая -
раздробленность
Похожие презентации
Презентация на тему Формулы (5 класс)
Целое уравнение и его корни
Последовательность
Коррекция нелинейных систем
Применение производной к исследованию функций
Удивительная симметрия
Смежные и вертикальные углы
Непрерывные случайные величины
Решение систем линейных уравнений. Правило Крамера. Метод Гаусса. Матричный метод
Состав числа 11
Статистические сравнения
Л.10_Непрерывность функции
Презентация на тему Перестановка слагаемых (1 класс)
Геометрическая прогрессия
Прочитай подані числові вирази
Шар. Сфера
Решение уравнений с весной
Геометрический и физический смысл производной
Тест 3 по математике
Некоторые свойства прямоугольных треугольников
Векторы. Действия с векторами
Решение уравнений методом замены переменной
Найди значение выражений
Действия с числами, записанными в стандартном виде
Задачи с параметрами
Математика среди нас
L_3
Обобщающий урок по начертательной геометрии прямая. Плоскость