Содержание
- 2. Цели урока: Ввести понятия угла между векторами и скалярного произведения векторов. Рассмотреть формулу скалярного произведения в
- 3. Проверка выполнения д/з: № 439(а) Дано: х у z 1 1 1 О Найти: А В
- 4. Проверка выполнения д/з: № 439(а) х у z 1 1 1 О Решение: А В К
- 5. Повторение: Какие векторы называются равными? Как найти длину вектора по координатам его начала и конца? А
- 6. Повторение. (Устно) Векторы в пространстве. 1) Дано: Найти: 2) Дано: Равны ли векторы и ? Нет,
- 7. Угол между векторами. О А В α Если то Если то Если то
- 8. Сопоставьте углы между векторами и их градусной мерой. О 450 1350 450 1800 00 300 1150
- 9. Скалярное произведение векторов. Скалярным произведением двух векторов называется произведение их длин на косинус угла между ними.
- 10. Скаляр – лат. scale – шкала. Ввел в 1845 г. У. ГАМИЛЬТОН, английский математик.
- 11. Если , то Если , то Если , то Если , то Скалярное произведение называется скалярным
- 12. Пример применения скалярного произведение векторов в физике. α Если , то Скалярное произведение векторов.
- 13. Формула скалярного произведения векторов в пространстве. Скалярное произведение двух векторов равно сумме произведений соответствующих координат этих
- 14. Докажем формулу скалярного произведения в координатах для случая, когда векторы неколлинеарны. Желающий выходит к доске. Подсказки
- 15. Дома, следуя рекомендациям в учебнике, вывести формулу cos α для двух ненулевых векторов в пространстве, зная
- 16. Решение задач. Найдите угол между векторами: а) и 450 б) и 450 в) Дан куб АВСDA1B1C1D1.
- 17. № 443 (г) Дано: куб АВСDA1B1C1D1; АВ = а; О1 – центр грани А1В1С1D1 Найти: 1
- 18. № 443 (г) Дано: куб АВСDA1B1C1D1; АВ = а; О1 – центр грани А1В1С1D1 Найти: 2
- 19. № 443 (г) Дано: куб АВСDA1B1C1D1; АВ = а; О1 – центр грани А1В1С1D1 Найти: 3
- 20. № 443 Решаем по группам: 1 – а) 2 – б) 3 – в) а2 -2а2
- 22. Скачать презентацию