Слайд 7Лифтинг вершин
Теорема Шлыка. Пусть x ⊢ n и x ∈ vert Pn
. Если из разбиения x удалить часть размера i ∈ S(x), то есть сделать из вектора x=(x1,..., xi-1, xi, xi+1,..., xn),где xi =1,вектор y=(x1,..., xi-1, xi -1, xi+1,..., xn), то вектор y будет вершиной политопа Pn-i.
Теорема (о лифтинге вершин). Пусть x ⊢ n и x ∈ vertPn , тогда если к разбиению x добавить :
часть размера i, где i ≠ n, i > n, то полученное разбиение y=(x1,...,xn,...,xi-1,xi+1,xi+1,...,xn+i) будет являться вершиной политопа разбиений числа n+i, xj=0, j>n
часть размера i∈S(x), где n/2 < i < n, то полученное разбиение y=(x1,...xi-1,xi+1,xi+1,...,xn,...,xn+i) будет являться вершиной политопа разбиений числа n+i, xj=0, j>n