Содержание
- 2. Imputation transformer for completing missing values. Multivariate imputer that estimates each feature from all the others.
- 3. SimpleImputer IterativeImputer, KNNImputer Imputes values in the i-th feature dimension using only non-missing values in that
- 4. All imputers implement methods:
- 5. Simple Imputer class sklearn.impute.SimpleImputer SimpleImputer( missing_values=nan, strategy='mean’, fill_value=None, verbose=0, copy=True, add_indicator=False ) The placeholder for the
- 6. Example
- 7. Iterative Imputer class sklearn.impute.IterativeImputer A strategy for imputing missing values by modeling each feature with missing
- 8. Iterative Imputer class sklearn.impute.IterativeImputer IterativeImputer( estimator=None missing_values=nan, initial_strategy='mean’, n_nearest_features=None, verbose=0, imputation_order='ascending’, random_state=None …. many other settings
- 9. Example
- 10. k-Nearest Neighbors Imputer class sklearn.impute.KNNImputer KNNImputer( missing_values=nan, n_neighbors=5, weights='uniform’, metric='nan_euclidean’, copy=True, add_indicator=False ) The placeholder for
- 11. Example
- 12. Marking imputed values class sklearn.impute.MissingIndicator MissingIndicator( missing_values=nan, features='missing-only', sparse='auto', error_on_new=True’, ) The placeholder for the missing
- 14. Скачать презентацию