Математические основы информатики. Восьмеричная и шестнадцатеричная системы счисления. Компьютерные системы счисления
Повторение Непозиционная В позиционной системе счисления с основанием q любое число может быть представлено в виде: Aq =±(an–1× qn–1 + an–2 × qn–2 +…+ a0 × q0 + a–1 × q–1 +…+ a–m × q–m). Система счисления — это знаковая система, в которой приняты определённые правила записи чисел. Цифры - знаки, при помощи которых записываются числа. Алфавит - совокупность цифр системы счисления. Система счисления Двоичная Десятичная Восьмеричная Шестнадцатеричная Римская Позиционная an–1an–2…a1a0 = an–1×8n–1+an–2×8n–2+…+a0×80 Пример: 10638 =1×83 +0×82+6×81+3×80=56310. Для перевода целого восьмеричного числа в десятичную систему счисления следует перейти к его развёрнутой записи и вычислить значение получившегося выражения. Восьмеричная система счисления Для перевода целого десятичного числа в восьмеричную систему счисления следует последовательно выполнять деление данного числа и получаемых целых частных на 8 до тех пор, пока не получим частное, равное нулю. Восьмеричной системой счисления называется позиционная система счисления с основанием 8. Алфавит: 0, 1, 2, 3, 4, 5, 6, 7.