Эконометрика, как наука

Содержание

Слайд 2

ТЕОРИЯ

Эконометрика изучает связи между явлениями. Связи могут быть полными – функциональными и

ТЕОРИЯ Эконометрика изучает связи между явлениями. Связи могут быть полными – функциональными
неполными – корреляционными. Для функциональной зависимости характерным является то, что изменение признака следствия целиком определяется изменением признаком фактора.

Слайд 3

ТЕОРИЯ

Например: площадь круга выражается формулой , S = πR² т.е. площадь круга

ТЕОРИЯ Например: площадь круга выражается формулой , S = πR² т.е. площадь
изменяется от изменения квадрата ее радиуса.
Корреляционные связи характеризуются тем, что величина признака следствия изменяется под влиянием нескольких факторов. При этом одни факторы оказывают влияние на все единицы изучаемой совокупности, а другие -

Слайд 4

ТЕОРИЯ

только на отдельные из них. Корреляционные связи проявляются отчетливо только в большом

ТЕОРИЯ только на отдельные из них. Корреляционные связи проявляются отчетливо только в
числе факторов, т.к. при этом сглаживаются индивидуальные особенности и второстепенные факторы. Например: анализируя производительность труда на предприятии, можно увидеть зависимость от ее уровня энерговооруженности труда.

Слайд 5

ТЕОРИЯ

Но производительность труда зависит и от других факторов: от режима работы предприятия,

ТЕОРИЯ Но производительность труда зависит и от других факторов: от режима работы
организации снабжения, квалификации работников и т.д. Поэтому зависимость производительности труда от уровня энерговооруженности труда не может быть полной, а является корреляционной.

Слайд 6

ТЕОРИЯ

Для выявления корреляционных зависимостей используют теоретическую формулу связи в виде математического уравнения,

ТЕОРИЯ Для выявления корреляционных зависимостей используют теоретическую формулу связи в виде математического
которое называется уравнением регрессии. Регрессия – это зависимость среднего значения величины от другой величины или нескольких величин.

Слайд 7

ТЕОРИЯ

Уравнение регрессии может быть описано уравнением линейной связи
Y = a₀ +

ТЕОРИЯ Уравнение регрессии может быть описано уравнением линейной связи Y = a₀
a₁x,
гиперболой Y = a₀ + a₁1/x ,
параболой Y = a₀ + a₁x + a₂x².
Если результативный признак (Y) с увеличением факторного признака (X) равномерно возрастает или убывает, то такая зависимость является линейной и выражается уравнением прямой.

Слайд 8

ТЕОРИЯ

Найти теоретическое уравнение связи – это значит рассчитать параметры прямой линии методом

ТЕОРИЯ Найти теоретическое уравнение связи – это значит рассчитать параметры прямой линии
наименьших квадратов, который дает систему двух нормальных уравнений.

Слайд 9

ТЕОРИЯ

Yx = a₀ + a₁ x
na₀ + a₁∑(x) = ∑(y)
a₀∑(x) + a₁∑(x)

ТЕОРИЯ Yx = a₀ + a₁ x na₀ + a₁∑(x) = ∑(y)
= ∑(xy)
Yx – теоретическое значение результативного признака.
Y – индивидуальное значение результативного признака.

Слайд 10

ТЕОРИЯ

n– число показателей.
X - индивидуальное значение результативного признака.
a₀,a₁ – параметры (коэффициенты) уравнения

ТЕОРИЯ n– число показателей. X - индивидуальное значение результативного признака. a₀,a₁ – параметры (коэффициенты) уравнения регрессии.
регрессии.

Слайд 11

ТЕОРИЯ

Теоретическое уравнение выражает функциональную зависимость (Y) от (X). Это возможно допустить, если

ТЕОРИЯ Теоретическое уравнение выражает функциональную зависимость (Y) от (X). Это возможно допустить,
прочие факторы, влияющие на (Y) не оказывают в данном случае существенного влияния.

Слайд 12

ТЕОРИЯ

Это бывает, когда корреляционная зависимость между (Y) и (X) высокая. В этом

ТЕОРИЯ Это бывает, когда корреляционная зависимость между (Y) и (X) высокая. В
случае параметр (a₁) при (X) в уравнении регрессии приобретает большое практическое значение. Этот параметр, который называется коэффициентом регрессии,
характеризует, в какой мере увеличивается (Y ) , с ростом величины (X).

Слайд 13

ЗАДАЧА

Имеются выборочные данные по однородным предприятиям: энерговооруженность труда одного рабочего (квт /час)

ЗАДАЧА Имеются выборочные данные по однородным предприятиям: энерговооруженность труда одного рабочего (квт
и выпуск готовой продукции (шт).
ОПРЕДЕЛИТЬ:
1. Факторные и результативные признаки.
2. Провести исследование взаимосвязи энерговооруженности и выпуска готовой продукции.

Слайд 14

ЗАДАЧА

3. Построить уравнение регрессии и вычислить коэффициент регрессии.
4. Построить графики практической и

ЗАДАЧА 3. Построить уравнение регрессии и вычислить коэффициент регрессии. 4. Построить графики
теоретической линии регрессии.
5. Определить форму связи и измерить тесноту связи.
6. Провести оценку адекватности.

Слайд 15

РЕШЕНИЕ

1. (Х) – факторным признаком является энерговооруженность.
(Y)– результативным признаком является выпуск готовой

РЕШЕНИЕ 1. (Х) – факторным признаком является энерговооруженность. (Y)– результативным признаком является
продукции.
2. Исходные данные поместим в следующую таблицу.

Слайд 17

РЕШЕНИЕ

3. Первичная информация проверяется на однородность по признаку-фактору с помощью коэффициента вариации

РЕШЕНИЕ 3. Первичная информация проверяется на однородность по признаку-фактору с помощью коэффициента вариации

Слайд 18

РЕШЕНИЕ

4. Проверка первичной информации на нормальность распределения с помощью правила «трех сигм».

РЕШЕНИЕ 4. Проверка первичной информации на нормальность распределения с помощью правила «трех
Сущность правила заключается в том, что в интервал «трех сигм» должны попасть факторные признаки. Те показатели, которые больше или меньше интервала «трех сигм», удаляются из таблицы.

Слайд 20

РЕШЕНИЕ

5. Исключить из первичной информации резко выделяющиеся единицы, которые по признаку-фактору не

РЕШЕНИЕ 5. Исключить из первичной информации резко выделяющиеся единицы, которые по признаку-фактору
попадают в интервал «трех сигм».
Вывод: Резко выделяющихся единиц в первичной информации нет.

Слайд 21

6. Для установления факта наличия связи производится аналитическая группировка по признаку-фактору. Построить

6. Для установления факта наличия связи производится аналитическая группировка по признаку-фактору. Построить
интервальный ряд распределения.
При этом формула для определения величины интервала имеет следующий вид:

Слайд 23

РЕШЕНИЕ

7. Построить эмпирическую линию связи. По оси абсцисс откладываются значения интервалов факторного

РЕШЕНИЕ 7. Построить эмпирическую линию связи. По оси абсцисс откладываются значения интервалов
признака – (X) . По оси ординат откладываются значения средней величины результативного признак – (Ȳ).

Слайд 24

ЭМПИРИЧЕСКАЯ ЛИНИЯ СВЯЗИ

ЭМПИРИЧЕСКАЯ ЛИНИЯ СВЯЗИ

Слайд 25

8. Для измерения степени тесноты связи используется линейный коэффициент связи:

8. Для измерения степени тесноты связи используется линейный коэффициент связи:

Слайд 26

РЕШЕНИЕ

Полученное значение линейного коэффициента корреляции необходимо сравнить с табличными данными.

РЕШЕНИЕ Полученное значение линейного коэффициента корреляции необходимо сравнить с табличными данными.

Слайд 28

РЕШЕНИЕ

Т.о. связь высокая. r = 0,86, а интервал связи (0,7 – 0,99).
9.

РЕШЕНИЕ Т.о. связь высокая. r = 0,86, а интервал связи (0,7 –
Предположим, что между энерговооруженности труда и выпуском готовой продукции существует линейная корреляционная связь которую можно выразить уравнением прямой.
Для этого составим новую таблицу.

Слайд 30

Вычислим параметры прямой с помощью системы двух нормальных уравнений:
Yx = a₀ +

Вычислим параметры прямой с помощью системы двух нормальных уравнений: Yx = a₀
a₁X
na₀ + a₁Σ(X) = Σ(Y)
a₀∑(X) + a₁∑(X²) = ∑(XY)
10a₀ + 20a₁ = 264
20a₀ + 45a₁ = 555
10a₀ + 20a₁ = 264 х { (-2)}
20a₀ + 45a₁ = 555

Слайд 31

РЕШЕНИЕ

-20a₀ – 40a₁ = -528
+20a₀ + 45a₁ = 555
5a₁ = 27
a₁

РЕШЕНИЕ -20a₀ – 40a₁ = -528 +20a₀ + 45a₁ = 555 5a₁
= 5,4
a₀ = 15,6

Слайд 32

РЕШЕНИЕ

Конечное уравнение следующее.
Yx = 15,6 + 5,4(X)
В уравнении регрессии коэффициент a₁

РЕШЕНИЕ Конечное уравнение следующее. Yx = 15,6 + 5,4(X) В уравнении регрессии
показывает, что с увеличением энерговооруженности труда одного рабочего на 1 (квт/час) выпуск готовой продукции возрастает на 5,4 шт.

Слайд 33

РЕШЕНИЕ

Построим графики практической и теоретической линии регрессии. По оси абсцисс отложим значения

РЕШЕНИЕ Построим графики практической и теоретической линии регрессии. По оси абсцисс отложим
факторного признака (x) , по оси ординат (Yx) и (Y). Чтобы определить (Yx) в уравнение регрессии подставить значения (x) и занести в таблицу.

Слайд 34

ЛИНИИ РЕГРЕССИИ

ЛИНИИ РЕГРЕССИИ

Слайд 35

ИЗМЕРИТЬ ТЕСНОТУ СВЯЗИ

10. Одним из важнейших этапов исследования является измерение тесноты связи.

ИЗМЕРИТЬ ТЕСНОТУ СВЯЗИ 10. Одним из важнейших этапов исследования является измерение тесноты
Для этого применяют линейный коэффициент корреляции (r) и индекс корреляции (R). Индекс корреляции применяется для измерения тесноты связи между признаками при любой форме связи, как линейной, так и нелинейной.

Слайд 36

Но его можно вычислять только после того, как определена форма связи и

Но его можно вычислять только после того, как определена форма связи и вычислена теоретическая линия регрессии.
вычислена теоретическая линия регрессии.

Слайд 37

Индекс корреляции измеряется от 0 до 1. Чем ближе индекс к 1,

Индекс корреляции измеряется от 0 до 1. Чем ближе индекс к 1,
тем теснее связь между признаками. Частным случаем индекса корреляции является коэффициент корреляции, который применяется только при линейной форме связи. В отличии от индекса корреляции линейный коэффициент корреляции показывает не только тесноту связи, но и направление связи (прямая или обратная) и измеряется от -1 до +1.

Слайд 38

ВЫВОД

Все показатели тесноты корреляционной связи показывают тесную связь между производительностью труда и

ВЫВОД Все показатели тесноты корреляционной связи показывают тесную связь между производительностью труда
энерговооруженностью труда. Т.к. R=r=0,86 то можно сделать заключение, что гипотеза о линейной форме связи подтверждена.

Слайд 39

АДЕКВАТНОСТЬ МОДЕЛИ

Проведем оценку адекватности регрессионной модели с помощью критерия Фишера.

АДЕКВАТНОСТЬ МОДЕЛИ Проведем оценку адекватности регрессионной модели с помощью критерия Фишера.

Слайд 40

ВЫВОД

Табличное значение критерия Фишера равно (Fт = 20,20). Эмпирическое значение критерия Фишера

ВЫВОД Табличное значение критерия Фишера равно (Fт = 20,20). Эмпирическое значение критерия
(Fэ = 23,048)сравниваем с табличным.
Если Fэ < Fт, то уравнение регрессии можно признать неадекватным.
Если Fэ > Fт, то уравнение регрессии признается значимым. (23,048 > 20,20)
Т.о. данная модель является адекватной.
Имя файла: Эконометрика,-как-наука.pptx
Количество просмотров: 61
Количество скачиваний: 0