История появления тригонометрии

Слайд 2

Титульный лист
Содержание
История появления тригонометрии
Знаки Sin, Cos, Tg, Ctg
Формулы приведения
Формулы суммы и разности

Титульный лист Содержание История появления тригонометрии Знаки Sin, Cos, Tg, Ctg Формулы
тригонометрических функций
Радианная мера
Формулы двойного угла

Содержание

Слайд 3

История тригонометрии, как наука о соотношениях между углами и сторонами треугольника и

История тригонометрии, как наука о соотношениях между углами и сторонами треугольника и
других геометрических фигур.
Историки полагают, что тригонометрию создали древние астрономы.

Слайд 4

ЗНАКИ Sin, Cos, Tg, Ctg

ЗНАКИ Sin, Cos, Tg, Ctg

Слайд 5

Тригонометрические функции углов вида (п/2)k ± a , где k – Z,

Тригонометрические функции углов вида (п/2)k ± a , где k – Z,
могут быть выражены через функции угла а с помощью формул, которые называют формулами приведения.

Sin (п/2 + а) = cos a

Cos a ( п/2 + а) = - sin a

Sin (2п + а) = sin a

Sin (п/2 - а) = cos a

Cos a ( п/2 - а) = sin a

Cos a ( 2п - а) = cos a

Sin (п - а) = sin a

Cos a ( п - а) = - cos a

Tg (п/2 + а) = - ctg a

Ctg (п + а) = ctg

ФОРМУЛЫ ПРИВЕДЕНИЯ

Слайд 6

Косинус разности (суммы) 2-х углов равен произведению косинусов этих углов плюс (минус)

Косинус разности (суммы) 2-х углов равен произведению косинусов этих углов плюс (минус)
произведение синусов этих углов.

Cos (a-(+) b) = cos a cos b + (-) sin a sin b

Синус суммы (разности) двух углов равен произведению синуса первого угла на косинус второго (минус) плюс произведению косинуса первого угла на синус второго.

Sin (a + (-) b) = sin a cos b + (-) cos a sin b

Tg (a + b) = (tg a +tg b) / (1 – tg a tg b)

ФОРМУЛЫ СЛОЖЕНИЯ

Слайд 7

Sin a + (-) sin b = 2 sin ((a + (-)

Sin a + (-) sin b = 2 sin ((a + (-)
b)/2) cos ((a – (+) b)/2)

Cos a + cos b = 2 cos ((a + b)/2) cos ((a – b)/2)

Cos a – cos b = - 2 sin ((a + b)/2) sin ((a – b)/2)

ФОРМУЛЫ СУММЫ И РАЗНОСТИ ТРИГОНОМЕТРИЧЕСКИХ ФУНКЦИИЙ

Слайд 8

1 рад = (180/п)0 ≈ 570

Угол в один радиан – это угол

1 рад = (180/п)0 ≈ 570 Угол в один радиан – это
поворота, при котором конец начального радиуса описывает дугу, длина которой равна радиусу.

n0 = (n*п)/1800

n рад = (n*1800)/п

РАДИАННАЯ МЕРА УГЛА

Слайд 9

Sin 2a = 2 sin a cos a

1 + cos 2a =

Sin 2a = 2 sin a cos a 1 + cos 2a
2 cos2 a

Cos 2a = cos2 a – sin2 a

Tg 2a = ( 2 tg a) / (1 – tg2 a)

1 – cos 2a = 2 sin2 a

Ctg (a + b) = (ctg a ctg b -1) / (ctg a + ctg b)

ФОРМУЛЫ ДВОЙНОГО УГЛА

Имя файла: История-появления-тригонометрии.pptx
Количество просмотров: 56
Количество скачиваний: 0