Слайд 2Взаимное расположение двух окружностей

Слайд 3Возможные случаи взаимного расположения окружностей

Слайд 4Возможные случаи взаимного расположения окружностей

Слайд 51. Центры окружностей совпадают
Такие окружности называются концентрическими. Если радиусы окружностей не равны, то

такие окружности образуют кольцо. Если радиусы окружностей равны, то окружности совпадают
Слайд 62. Центры окружностей не совпадают
Соединим центры прямой d, которую назовем линией центров

данной пары окружностей. И будем считать, что
Слайд 7Если , то очевидно, что окружности не пересекаются. В этом случае говорят,

что одна окружность лежит вне другой.
Слайд 8Если , то тогда одна окружность лежит внутри другой, но они не

пересекаются.
Слайд 9Если , тогда малая окружность лежит внутри большой, но имеет с ней

одну общую точку на линии центров.
Такой случай называют внутренним касанием, а такие окружности называют внутренне касающимися.
Слайд 10Если , то такие окружности имеют одну общую точку, причем центр одной

из них расположен за пределами второй окружности. Такой вид касания называется внешним касанием, а такие окружности называются внешне касающимися. Точка касания внешне касающихся окружностей лежит на линии центров.
Слайд 11Если , то окружности пересекаются в двух точках и называются пересекающимися.

Слайд 12Домашнее задание:
стр. 238-240, п.96 разобрать;
№ 962, 969, устно разобрать № 981 и

письменно выполнить №983
В классе: № 971