Содержание
- 2. Криволинейной трапецией называется фигура, ограниченная отрезками прямых х = а, х = b, y = 0
- 3. Формула Ньютона – Лейбница Площадь криволинейной трапеции
- 4. Вычислить площадь криволинейной трапеции
- 5. Площадь фигуры равна сумме площадей криволинейных трапеций
- 6. Площадь фигуры равна разности площадей криволинейных трапеций
- 7. Площадь фигуры вычисляется как разность площадей криволинейных трапеций на отрезке [a;b] Если функции у = f(x)
- 8. Искомая площадь фигуры равна площади фигуры, симметричной данной относительно оси Ох Если f(x) 0 на отрезке
- 10. Задача. Вычислить площадь фигуры, ограниченной параболой , осью Ох и прямой, проходящей через точки (4;0) и
- 11. Задача. Вычислить площадь фигуры, ограниченной параболой , осью Ох и прямой, проходящей через точки (4;0) и
- 12. Задача. Найти площадь фигуры, ограниченной линиями Решение. Точки пересечения заданных линий: О(0;0), К(6;0), Р(4;2) Фигура состоит
- 13. Решение. Найдём абсциссы точек пересечения этих графиков из уравнения Искомая площадь равна сумме площадей криволинейных трапеций
- 14. Задача. Найти площадь фигуры, ограниченной графиками функций , осями абсцисс и ординат. Решение. Функция возрастает, а
- 15. Задача. Найти площадь фигуры, ограниченной графиками функций y = x2 - 2x + 2 и y
- 16. Задача. Найти площадь фигуры, ограниченной графиками функций y = x2 +1 и y = x +
- 17. Задача. Найти площадь фигуры, ограниченной графиками функций y = x3 и y = Решение. Найдём точки
- 18. Задача. Найти площадь фигуры, ограниченной , линиями , – Решение.
- 19. Задача. Найдите площадь фигуры, ограниченной линиями Решение.
- 20. Задача. Найти площадь фигуры, ограниченной линиями y = (x + 3)(3 – x), y = 4
- 21. Задача. Найти площадь фигуры, ограниченной графиком функции и осями координат Решение. Заданная фигура представляет собой криволинейную
- 22. Задача. Вычислить площадь фигуры, ограниченной параболой и прямой, проходящей через точки (4;0) и (0;4). Решение. Первый
- 23. Задача. Вычислить площадь фигуры, ограниченной параболой и прямой, проходящей через точки (4;0) и (0;4).
- 24. Задача. Найти площадь фигуры, ограниченной параболами
- 25. Задача. Найти площадь фигуры, ограниченной графиками функций
- 26. По рисункам 31 – 36 назвать из каких фигур состоит фигура , площадь которой вычисляется, и
- 28. Скачать презентацию





![Площадь фигуры вычисляется как разность площадей криволинейных трапеций на отрезке [a;b] Если](/_ipx/f_webp&q_80&fit_contain&s_1440x1080/imagesDir/jpg/839124/slide-6.jpg)



















Аксиомы стереометрии. Взаимное расположение прямых и плоскостей в пространстве
Решение задачи Корабли или история 7 семестров
Решение задач. Урок 22
Изучение таблицы деления
Пирамида Кукулькана – величайший храм майя
Решение треугольников
Нумерация. Подготовка к ВПР
Вычисления. 5 класс
Рисуем по координатам
Математика. Вспоминаем, повторяем
Векторное исчисление
История развития геометрии как науки
Симметрия многогранников
Усеченый конус
Графики функций
Графическое решение задач на равномерное движение
Показательные уравнения
Решение прямоугольных треугольников
Как помочь учащимся легче воспринимать новый материал
Преобразование тригонометрического выражения
Преобразование графиков функций. 9 класс
Задача на движение
Закрепление сложения однозначных чисел с переходом через десяток
Умножение пяти, на 5 и соответствующие случаи деления. Математика 3 класс. Учителя начальных классов Лаишевской специальной школ
Окружность и круг
Системы логического управления ( СЛУ )
Презентация на тему Сложение целых чисел
Презентация на тему Построение треугольника по трем элементам