Слайд 2 Многогранник или полиэдр — поверхность, составленная из многоугольников, которые ограничивают некоторое пространство.

Слайд 3 Цель ─ расширить представление о геометрических фигурах на примере невыпуклых многогранников.

Задачи:
1.Выявить признак невыпуклости многогранников.
2.Определить основные свойства невыпуклых многогранников.
3.Выяснить, каково применение невыпуклых многогранников в повседневной жизни.
Гипотетический вопрос:
Возможно ли создать что-то полезное в виде невыпуклого многогранника?
Слайд 4 Невыпуклые многогранники обладают такими гранями, плоскости которых разделяют фигуру на две

части, расположенные по обе стороны данной плоскости.
Слайд 5А
B
С
D
E
F
A1
B1
C1
D1
E1
F1
EDD1E1 ─ грань, принадлежащая плоскости α , а также фигуре ANBCDEFA1N1B1C1D1E1F1

Слайд 23 Затраченный материал:
1) 8 листов для черчения формата А4
2) клей

Расчётная площадь поверхности:
Sполн. пов. = Sпов. куба. + Sотв.
Слайд 24Выводы:
1.Признак невыпуклости многогранника
доказан.
2.Невыпуклые многогранники являются своеобразными геометрическими фигурами.
3.В форме невыпуклых

многогранников существует множество предметов повседневной жизни.
Слайд 25Заключение.
В нашем мире существует много примеров воплощения креативных, интересных и полезных

идей в жизнь и быт человека. Одним из таких примеров может служить невыпуклый многогранник, в виде которого на сегодняшний день существует немало объектов повседневной жизни.