Антибиотики. Вакцины. Сыворотки (лекция 8)

Содержание

Слайд 2

Антибиотики

= препараты природного или синтетического происхождения, обладающие избирательной способностью подавлять или

Антибиотики = препараты природного или синтетического происхождения, обладающие избирательной способностью подавлять или задерживать рост микроорганизмов
задерживать рост микроорганизмов

Слайд 3

Классификация антибиотиков по источнику получения

Природные микробные
Природные растительные
Природные животного происхождения
Полусинтетические
Синтетические

Классификация антибиотиков по источнику получения Природные микробные Природные растительные Природные животного происхождения Полусинтетические Синтетические

Слайд 4

Природные микробные антибиотики

1. Грибкового происхождения:
– пенициллины,
- цефалоспорины,
2. Актиномицетного происхождения:
стрептомицин,
тетрациклин,

Природные микробные антибиотики 1. Грибкового происхождения: – пенициллины, - цефалоспорины, 2. Актиномицетного

актиномицины,
3. Бактериального происхождения (Bacillus, Pseudomonas):
грамицидин,
полимиксин,
тиротрицин.

Слайд 5

Природные антибиотики растительного происхождения

Низшие растения (лишайники) - усниновая кислота
Высшие растения –

Природные антибиотики растительного происхождения Низшие растения (лишайники) - усниновая кислота Высшие растения – фитонциды.
фитонциды.

Слайд 6

Природные антибиотики животного происхождения

Животные теплокровные позвоночные:
- лизоцим,
эритрин,
спермин,
Животные холоднокровные позвоночные:

Природные антибиотики животного происхождения Животные теплокровные позвоночные: - лизоцим, эритрин, спермин, Животные
- экмолин,
- скваламин,
Насекомые:
иридомирмецин,
педерин.

Слайд 7

Классификация антибиотиков по химической структуре

I класс: β-лактамы
пенициллины
Цефалоспорины
II класс: макролиды и

Классификация антибиотиков по химической структуре I класс: β-лактамы пенициллины Цефалоспорины II класс:
линкозамиды
эритромицин
линкомицин
III класс: аминогликозиды
стрептомицин
гентамицин,
канамицин,

Слайд 8

Классификация антибиотиков по химической структуре

IV класс: тетрациклины
доксициклин
V класс: полипептиды
полимиксин
VI

Классификация антибиотиков по химической структуре IV класс: тетрациклины доксициклин V класс: полипептиды
класс: полиены
нистатин
амфотерицин В
VII класс: рифамицины
Рифампицин

Слайд 9

Классификация антибиотиков по химической структуре

Дополнительная группа
левомицетин
гризеофульвин

Классификация антибиотиков по химической структуре Дополнительная группа левомицетин гризеофульвин

Слайд 10

Классификация антибиотиков по механизму действия

1.Нарушающие синтез клеточной стенки:
- β-лактамы
2.Нарушающие структуру

Классификация антибиотиков по механизму действия 1.Нарушающие синтез клеточной стенки: - β-лактамы 2.Нарушающие
и синтез ЦПМ:
полимиксин,
полиены.
3. Нарушающие синтез белка – наиболее многочисленная группа:
аминогликозиды,
тетрациклины,
макролиды.
4.Нарушающие структуру и синтез нуклеиновых кислот:
ДНК – хинолоны,
РНК - рифампицин

Слайд 11

Классификация антибиотиков по спектру действия

1. Узкого спектра действия
– действуют на

Классификация антибиотиков по спектру действия 1. Узкого спектра действия – действуют на
отдельные виды или группы видов
2. Широкого спектра действия
– действуют на многие виды микроорганизмов

Слайд 12

Классификация антибиотиков по мишени действия

Антибактериальные:
цефалоспорины,
полимиксины
Антифунгальные (противогрибковые) = антимикотики:
- флуконазол
Противопротозойные:
-

Классификация антибиотиков по мишени действия Антибактериальные: цефалоспорины, полимиксины Антифунгальные (противогрибковые) = антимикотики:
метронидазол (трихопол)
Противоопухолевые:
– рубомицин,
актиномицин С,
брунеомицин.

Слайд 13

Классификация антибиотиков по типу действия

1.Бактерицидные (микробоцидные)
– убивают бактерии (микроорганизмы)
2.Бактериостатические (микробостатические)

Классификация антибиотиков по типу действия 1.Бактерицидные (микробоцидные) – убивают бактерии (микроорганизмы) 2.Бактериостатические

– угнетают рост бактерий (микроорганизмов),
но не убивают их.

Слайд 14

Осложнения антибиотикотерапии со стороны макроорганизма

Токсические реакции:
прямое токсическое действие (органотропное),
феномен обострения (Герца-Геймера).
Дисбактериоз:
вторичные эндогенные

Осложнения антибиотикотерапии со стороны макроорганизма Токсические реакции: прямое токсическое действие (органотропное), феномен
инфекции, вызванные условно-патогенной микрофлорой,
повышение восприимчивости к патогенным микробам.
Иммунопатологические реакции:
аллергические,
иммунодефицит.
Тератогенное действие.

Слайд 15

Осложнения антибиотикотерапии со стороны микроорганизма

Появление атипичных форм бактерий, которые трудно идентифицировать (например

Осложнения антибиотикотерапии со стороны микроорганизма Появление атипичных форм бактерий, которые трудно идентифицировать
– L-форм).
2. Формирование антибиотикоустойчивости:
через 1 – 3 года применения нового антибиотика появляются устойчивые бактерии,
через 10 – 20 лет применения нового антибиотика формируется полная устойчивость к препарату.

Слайд 16

Определение чувствительности бактерий к антибиотикам

Определение чувствительности бактерий к антибиотикам

Слайд 17

Метод дисков

посев тестируемого штамма на чашку Петри газоном

Наложение стандартных дисков с

Метод дисков посев тестируемого штамма на чашку Петри газоном ⇓ Наложение стандартных
антибиотиками

Инкубация

Замер зоны (диаметра) задержки роста

Вывод о чувствительности тестируемого штамма к каждому из применяемых антибиотиков (антибиотикограмма)
высокая
средняя
низкая
резистентность

Слайд 19

Метод серийных разведений

Приготовление серии (обычно 8) двойных разведений антибиотика в питательной

Метод серийных разведений Приготовление серии (обычно 8) двойных разведений антибиотика в питательной
среде

Засев сред с разведениями антибиотика тестируемым штаммом

Инкубация

Учёт бактериостатической концентрации (МИК – минимальной ингибирующей концентрации) антибиотика по отношению к тестируемому штамму (= максимальное разведение, в котором еще не наблюдается рост тестируемого штамма)

Слайд 20

Метод серийных разведений


Высев из разведений, в которых не наблюдается рост тестируемых штаммов

Метод серийных разведений ⇓ Высев из разведений, в которых не наблюдается рост
на питательную среду без антибиотика

Инкубация

Учёт бактерицидной концентрации (МБК – минимальной бактерицидной концентрации) антибиотика по отношении к тестируемому штамму (=максимальное разведение, высев из которого на питательную среду без антибиотика не дал роста).

Слайд 21

Химиотерапевтические препараты (синтетические антибиотики)

– вещества, созданные путем химического синтеза, не встречаются в

Химиотерапевтические препараты (синтетические антибиотики) – вещества, созданные путем химического синтеза, не встречаются
живой природе, но похожи на антибиотики по механизму, типу и спектру действия.
Наиболее значимые препараты:
* Сульфаниламиды
* Аналоги изоникотиновой кислоты
* Хинолоны и фторхинолоны
* Имидазолы и нитроимидазолы
* Нитрофураны

Слайд 22

Сульфаниламиды

основу их молекулы составляет парааминогруппа, поэтому они являются антагонистами парааминобензойной кислоты,

Сульфаниламиды основу их молекулы составляет парааминогруппа, поэтому они являются антагонистами парааминобензойной кислоты,
необходимой бактериям для синтеза фолиевой кислоты (=предшественника пуриновых и пиримидиновых оснований).
бактериостатики,
спектр действия – широкий,
активны в отношении:
стрептококков,
менингококков,
гонококков,
кишечной палочки,
возбудителей трахомы.
Единственный препарат, который продолжает широко использоваться: Ко-тримоксазол (бактрим, бисептол).

Слайд 23

Аналоги изоникотиновой кислоты

1. гидразиды:
- изониазид,
- фтивазид,
- тубазид,

Аналоги изоникотиновой кислоты 1. гидразиды: - изониазид, - фтивазид, - тубазид, -

- метазид.
2. производные тиамида изоникотиновой кислоты:
- этионамид,
- пропионамид.
обладают бактериостатическим действием в отношении микобактерий туберкулеза.

Слайд 24

Хинолоны

= препараты, блокирующие процессы репликации и транскрипции.
Первый препарат этого класса –

Хинолоны = препараты, блокирующие процессы репликации и транскрипции. Первый препарат этого класса
налидиксовая кислота:
– ограниченный спектр действия,
быстро развивается резистентность,
применяется при лечении инфекций мочевыводящих путей.

Слайд 25

Фторхинолоны

ципрофлоксацин, норфлоксацин
созданы на основе хинолонов = фторированные соединения,
обладают бактерицидным действием,

Фторхинолоны ципрофлоксацин, норфлоксацин созданы на основе хинолонов = фторированные соединения, обладают бактерицидным

спектр - широкий,
имеют разные способы введения,
хорошо переносимы,
высоко активны в месте введения.

Слайд 26

Имидазолы и нитроимидазолы

Имидазолы (клотримазол)- противогрибковые препараты, действуют на уровне цитоплазматической мембраны.
Нитроимидазолы:
метранидазол,
трихопол,

Имидазолы и нитроимидазолы Имидазолы (клотримазол)- противогрибковые препараты, действуют на уровне цитоплазматической мембраны.
– ДНК-тропные препараты,
- особенно активны против анаэробных бактерий и простейших ( трихомонады, лямблии, дизентерийная амеба).
Тип действия – микробоцидный.

Слайд 27

Нитрофураны

фуразолидон, фурациллин
ДНК-тропные препараты,
Тип действия – бактерицидный, спектр – широкий.
Накапливаются

Нитрофураны фуразолидон, фурациллин ДНК-тропные препараты, Тип действия – бактерицидный, спектр – широкий.
в моче в высоких концентрациях,
Применяются как уросептики для лечения инфекций мочевыводящих путей.

Слайд 28

Механизмы формирования лекарственной устойчивости

 Под действием антибиотиков микроорганизмы изменяют свои свойства:
морфологические,
культуральные,

Механизмы формирования лекарственной устойчивости Под действием антибиотиков микроорганизмы изменяют свои свойства: морфологические,

антигенные и т. п.
особенно резистентность!

Слайд 29

Механизмы формирования лекарственной устойчивости

Лекарственная устойчивость бывает:
Природной = отсутствие у микроорганизма мишени, на

Механизмы формирования лекарственной устойчивости Лекарственная устойчивость бывает: Природной = отсутствие у микроорганизма
которую направлено действие антибиотика,
н-р, пенициллин не действует на микоплазмы, т.к. нет Клеточной Стенки.
Приобретенной = преобразование мишени в результате мутационно-рекомбинационных изменений.

Слайд 30

Механизмы формирования приобретенной лекарственной устойчивости
А) плазмиды резистентности и транспозоны:
транспозон – 1 препарат,

Механизмы формирования приобретенной лекарственной устойчивости А) плазмиды резистентности и транспозоны: транспозон –

плазмиды (несколько траспозонов) = несколько препаратов,
Межвидовая передача и межродовая

Слайд 31

Механизмы формирования приобретенной лекарственной устойчивости
Б) модификация мишени:
н-р, ПСБ (пенициллинсвязывающие белки):
-

Механизмы формирования приобретенной лекарственной устойчивости Б) модификация мишени: н-р, ПСБ (пенициллинсвязывающие белки):
участвуют в синтезе КС бактерий,
- на них действуют бета-лактамные а/б,
при мутациях появляются измененные ПСБ, на которые не действуют эти а/б.

Слайд 32

Механизмы формирования приобретенной лекарственной устойчивости

В) инактивация антибиотика с помощью ферментов бактерий
Н-р, бетта-лактамазы

Механизмы формирования приобретенной лекарственной устойчивости В) инактивация антибиотика с помощью ферментов бактерий
=пенициллины,
амидазы – цефалоспорины,
Некоторые микроорганизмы имеют ферменты, разрушающие несколько а/б = полирезистентность

Слайд 33

Механизмы формирования приобретенной лекарственной устойчивости

Г) Эффлюкс-активное выведение а/б из микробной клетки –

Механизмы формирования приобретенной лекарственной устойчивости Г) Эффлюкс-активное выведение а/б из микробной клетки
осуществляется транспортными системами, которые кодируют специальные гены
Н-р, синегнойная палочка, пневмококк имеют mefген - отвечает за вывод из клетки макролидных а/б→ концентрация а/б резко снижается и он не опасен для бактерий

Слайд 34

Механизмы формирования приобретенной лекарственной устойчивости
Д) нарушение проницаемости внешних структур микробной клетки
Н-р,

Механизмы формирования приобретенной лекарственной устойчивости Д) нарушение проницаемости внешних структур микробной клетки
при мутации у бактерий нарушается способность образовывать белки-порины, без которых клетка теряет проницаемость и приобретает устойчивость к а/б

Слайд 35

Механизмы формирования приобретенной лекарственной устойчивости
Е) формирование «метаболического шунта» :
- м/о приобретают гены,

Механизмы формирования приобретенной лекарственной устойчивости Е) формирование «метаболического шунта» : - м/о
кодирующие определенные этапы метаболического пути клетки, устойчивые к действию а/б →
= метаболизм идет по обходному пути и а/б не может его ингибировать.

Слайд 36

Пути преодоления лекарственной устойчивости  

1. Сократить использование а/б с профилактической целью,
 2. Периодически менять

Пути преодоления лекарственной устойчивости 1. Сократить использование а/б с профилактической целью, 2.
набор препаратов в пределах одного лечебного учреждения,
 3. Увеличивать лечебные дозы в допустимых пределах и вводить препарат в очаг поражения – н-р, внутриплеврально, внутрисуставно,

Слайд 37

Пути преодоления лекарственной устойчивости  

4. Использовать а/б с пролонгированным действием – (иммобилизация на

Пути преодоления лекарственной устойчивости 4. Использовать а/б с пролонгированным действием – (иммобилизация
носителях =полимерные соединения).
Н-р, противоопухолевый аурантин-активен 3 час, на носителе – 7 сут

Слайд 38

Пути преодоления лекарственной устойчивости  

5. Использовать а/б в сочетании с другими препаратами: ферментами

Пути преодоления лекарственной устойчивости 5. Использовать а/б в сочетании с другими препаратами:
или др. а/б.
Н-р, клавулановая кислота – ингибирует бетта-лактамазу→ амоксиклав (амоксициллин+клавулановая кислота),
Другие блокаторы бетта-лактамазы:
сульбактам,
тазобактам.

Слайд 39

Пути преодоления лекарственной устойчивости  

6. Ограничить применение а/б в ветеринарии:
не добавлять в корм

Пути преодоления лекарственной устойчивости 6. Ограничить применение а/б в ветеринарии: не добавлять
сельскохозяйственных животных для увеличения массы антибиотики, применяемые в медицине,
7. Для консервирования продуктов не использовать а/б.

Слайд 40

Проблемы химиотерапии вирусных инфекций

По химическому составу и механизмам действия различают:
химиопрепараты,
интерфероны,

Проблемы химиотерапии вирусных инфекций По химическому составу и механизмам действия различают: химиопрепараты,

индукторы эндогенных интерферонов,
иммуномодуляторы.

Слайд 41

Противовирусные химиопрепараты

– синтетические лекарственные средства, механизм действия которых заключается в избирательном подавлении

Противовирусные химиопрепараты – синтетические лекарственные средства, механизм действия которых заключается в избирательном
отдельных этапов репродукции вирусов без существенного нарушения жизнедеятельности клеток макроорганизма.

Слайд 42

Основные противовирусные химиопрепараты:

1. Аномальные нуклеозиды:
- азидотимидин,
ацикловир,
видарабин,
рибавирин,
2.Производные адамантана:
-

Основные противовирусные химиопрепараты: 1. Аномальные нуклеозиды: - азидотимидин, ацикловир, видарабин, рибавирин, 2.Производные
адопромин,
амантадин,
ремантадин,
3. Синтетические аминокислоты:
амбен,
аминокапроновая кислота.

Слайд 43

Основные противовирусные химиопрепараты:

4. Аналоги пирофосфата:
- фоскарнет
5. Производные тиосемикарбазона:
- марборан,

Основные противовирусные химиопрепараты: 4. Аналоги пирофосфата: - фоскарнет 5. Производные тиосемикарбазона: -

- метисазон
6. Вирулицидные препараты:
- оксолин,
теброфен,
флюреналь
7. Прочие препараты:
пандовир,
хельпин,
арбидол

Слайд 44

Интерфероны

Белки со сходными свойствами, выделяемые клетками организма в ответ на вторжение вируса.

Интерфероны Белки со сходными свойствами, выделяемые клетками организма в ответ на вторжение

Благодаря интерферонам клетки становятся невосприимчивыми по отношению к вирусу.
В зависимости от типа клеток, в которых они образуются различают α, β и γ-интерфероны.

Слайд 45

Человеческий лейкоцитарный интерферон

Человеческий лейкоцитарный интерферон

Слайд 46

Индукторы интерферона

— это вещества природного или синтетического происхождения, стимулирующие в организме человека

Индукторы интерферона — это вещества природного или синтетического происхождения, стимулирующие в организме
продукцию собственного интерферона, который способствует формированию защитного барьера, препятствующего инфицированию организма вирусами и бактериями, а также регулирует состояние иммунной системы и ингибирует рост злокачественных клеток.
Примеры: амиксин, циклоферон, кагоцел, ридостин.

Слайд 47

Иммуномодуляторы

— природные или синтетические вещества, способные оказывать регулирующее действие на иммунную систему.

Иммуномодуляторы — природные или синтетические вещества, способные оказывать регулирующее действие на иммунную

По характеру влияния на иммунную систему их подразделяют на:
иммуностимулирующие,
иммуносупрессивные.

Слайд 48

ВАКЦИНЫ

препараты, содержащие антиген и применяемые для создания активного иммунитета.

ВАКЦИНЫ препараты, содержащие антиген и применяемые для создания активного иммунитета.

Слайд 49

Общая классификация вакцин

Живые (аттенуированные).
Убитые (инактивированные).
Химические:
компонентные или субклеточные (бактериальные)
субъединичные или субвирионные (вирусные).
Молекулярные

Общая классификация вакцин Живые (аттенуированные). Убитые (инактивированные). Химические: компонентные или субклеточные (бактериальные)
(анатоксины).
Нового поколения:
синтетические,
генно-инженерные

Слайд 50

Живые вакцины (аттенуированные)

Получение:
отбор стойких спонтанных или индуцированных мутантов с пониженной

Живые вакцины (аттенуированные) Получение: отбор стойких спонтанных или индуцированных мутантов с пониженной
вирулентностью и сохраненной иммуногенностью (вакцинный штамм).

Слайд 51

Живые вакцины (аттенуированные)

Общая характеристика:
поствакцинальный иммунитет ~ постинфекционному (т.к. формируется в результате

Живые вакцины (аттенуированные) Общая характеристика: поствакцинальный иммунитет ~ постинфекционному (т.к. формируется в
вакцинального процесса = размножении в организме вакцинного штамма и воздействия его на иммунокомпетентные клетки),
в большинстве случаев вводятся однократно,
при иммунодефицитных состояниях – крайне опасны.

Слайд 52

По способу получения вакцинных штаммов живые вакцины подразделяют на:

аттенуированные,
дивергентные,
векторные.

По способу получения вакцинных штаммов живые вакцины подразделяют на: аттенуированные, дивергентные, векторные.

Слайд 53

Аттенуированные штаммы для вакцины возникают под воздействием:

необычной для микроба температуры культивирования,
изменения

Аттенуированные штаммы для вакцины возникают под воздействием: необычной для микроба температуры культивирования,
состава питательной среды,
антибиотиков,
пассирования через организм животных;
Н-р, вакцины для профилактики:
- туберкулеза,
- чумы,
- туляремии,
- сибирской язвы,
- бруцеллеза,
-Ку-лихорадки.

Слайд 54

Дивергентные вакцины

- получены путем подбора генетически близких условно-патогенных микроорганизмов, имеющих общие антигены

Дивергентные вакцины - получены путем подбора генетически близких условно-патогенных микроорганизмов, имеющих общие
с патогенными микробами.
Н-р, оспенная и туберкулезная вакцины.

Слайд 55

Векторные вакцины

получают методом генной инженерии, встраивая в геном вакцинного штамма ген чужеродного

Векторные вакцины получают методом генной инженерии, встраивая в геном вакцинного штамма ген
антигена.
Н-р, вакцина против гепатита В получена в результате введения в оспенную вакцину гена, кодирующего HBs антиген вируса гепатита В.

Слайд 56

Убитые вакцины (инактивированные)

Получение:
инактивация микроорганизма:
- температурой,
- УФ ,
- химическими веществами
в

Убитые вакцины (инактивированные) Получение: инактивация микроорганизма: - температурой, - УФ , -
условиях, исключающих денатурацию его антигенов.

Слайд 57

Убитые вакцины (инактивированные)

Эффективность убитых вакцин ниже, чем живых.
Их вводят обычно подкожно

Убитые вакцины (инактивированные) Эффективность убитых вакцин ниже, чем живых. Их вводят обычно
2-3 раза с интервалом в 10 дней с последующей ревакцинацией через 1 нед-3года.
Убитые вакцины применяют для профилактики:
брюшного тифа,
коклюша,
лептоспироза.

Слайд 58

ХИМИЧЕСКИЕ ВАКЦИНЫ (компонентные или субклеточные и субъединичные или субвирионные)

ПРЕИМУЩЕСТВА:
наиболее безопасны,
эффективность зависит

ХИМИЧЕСКИЕ ВАКЦИНЫ (компонентные или субклеточные и субъединичные или субвирионные) ПРЕИМУЩЕСТВА: наиболее безопасны,
от конкретного препарата
ПОЛУЧЕНИЕ:
выделение протективных антигенов из:
бактерий (компонентные или субклеточные вакцины),
- вирусов (субъединичные или субвирионные вакцины).

Слайд 59

Получение химических вакцин

антигены микробных клеток извлекают химическими методами, например, методом ферментативного переваривания

Получение химических вакцин антигены микробных клеток извлекают химическими методами, например, методом ферментативного
с помощью трипсина с последующим осаждением спиртом,
Выделенные антигены осаждают на адъювантах (гидроокись алюминия, фосфат кальция), которые усиливают иммунный ответ, образуют депо антигенов и стабилизируют их.

Слайд 60

химические (субклеточные и субвирионные) вакцины

К субклеточным вакцинам относятся менингококковые и пневмококковые вакцины,

химические (субклеточные и субвирионные) вакцины К субклеточным вакцинам относятся менингококковые и пневмококковые
приготовленные из полисахаридных антигенов капсул;
к субвирионным - гриппозная на основе гемагглютитина и нейраминидазы.

Слайд 61

Молекулярные вакцины (анатоксины или токсоиды)

ПОЛУЧЕНИЕ:
обработка белкового токсина 0,3% формалином при

Молекулярные вакцины (анатоксины или токсоиды) ПОЛУЧЕНИЕ: обработка белкового токсина 0,3% формалином при
37оС на протяжении 30 дней;
в результате белковый токсин теряет свою ядовитость, но сохраняет иммуногенность = анатоксин.
ОБЩАЯ ХАРАКТЕРИСТИКА:
самые эффективные вакцины.

Слайд 62

Молекулярные вакцины (анатоксины или токсоиды)

Анатоксины применяют для профилактики:
дифтерии,
столбняка,
стафилококковой

Молекулярные вакцины (анатоксины или токсоиды) Анатоксины применяют для профилактики: дифтерии, столбняка, стафилококковой инфекции.
инфекции.

Слайд 63

Синтетические вакцины

получены на основе олигопептидов и олигосахаридов – это комплексные макромолекулы, состоящие

Синтетические вакцины получены на основе олигопептидов и олигосахаридов – это комплексные макромолекулы,
из:
антигенной детерминанты, полученной искусственным путем,
адъюванта,
неприродных полимерных носителей антигена – иммунопотенциаторов.
Синтетические вакцины разрабатываются для профилактики:
сальмонеллеза,
коли-бактериоза.

Слайд 64

Генно-инженерные или рекомбинантные вакцины

Ген, отвечающий за выработку антигена патогенного микроорганизма вносят в

Генно-инженерные или рекомбинантные вакцины Ген, отвечающий за выработку антигена патогенного микроорганизма вносят
геном клетки дрожжей или вируса осповакцины
Н-р, вакцина против гепатита В.

Слайд 65

Применение вакцин

Для профилактики (вакцинопрофилактика)
Для лечения (вакцинотерапия)

Применение вакцин Для профилактики (вакцинопрофилактика) Для лечения (вакцинотерапия)

Слайд 66

Сыворотки и иммуноглобулины

Иммунные сыворотки и получаемые из них иммуноглобулины – биологические препараты,

Сыворотки и иммуноглобулины Иммунные сыворотки и получаемые из них иммуноглобулины – биологические
содержащие антитела.
Они предназначены для создания пассивного иммунитета и используются как средства серопрофилактики и серотерапии.
Действие сывороток начинается сразу после введения, но срок действия ограничен периодом их сохранения в организме (2-4 недели).

Слайд 67

Сыворотки

В зависимости от источника получения различают :
гетерологичные
гомологичные сыворотки.

Сыворотки В зависимости от источника получения различают : гетерологичные гомологичные сыворотки.

Слайд 68

Гетерологичные сыворотки

готовят путем гипериммунизации животных (лошадей, ослов, волов) анатоксином или другими антигенами

Гетерологичные сыворотки готовят путем гипериммунизации животных (лошадей, ослов, волов) анатоксином или другими
микроорганизмов.
По направлению действия гетерологичные сыворотки делят на:
антитоксические,
антибактериальные
противовирусные.

Слайд 69

Антитоксические сыворотки

используются при лечении токсикоинфекций, так как они способны нейтрализовать

Антитоксические сыворотки используются при лечении токсикоинфекций, так как они способны нейтрализовать действие
действие соответствующих токсинов,
например, сыворотка против экзотоксинов возбудителей:
- дифтерии,
- столбняка,
- ботулизма,
- холеры.

Слайд 70

Антибактериальные сыворотки

способствуют фагоцитозу и лизису микробных клеток в организме,
но

Антибактериальные сыворотки способствуют фагоцитозу и лизису микробных клеток в организме, но они
они обладают малой эффективностью и способны вызвать тяжелые осложнения.
В настоящее время применяются редко.
В практике используют иммунные сыворотки:
- противосибиреязвенную,
- противолептоспирозную,
- противостафилококковую.

Слайд 71

Противовирусные сыворотки

способны инактивировать вирусы.
Их используют для лечения и профилактики:
клещевого энцефалита,
бешенства,

Противовирусные сыворотки способны инактивировать вирусы. Их используют для лечения и профилактики: клещевого

кори,
гриппа,
гепатитов.

Слайд 72

ГОМОЛОГИЧНЫЕ лечебно-профилактические сыворотки и иммуноглобулины
ДОНОРСКИЕ
Специально Обычные
иммунизи-
рованных
доноров
ПЛАЦЕНТАРНЫЕ

ГОМОЛОГИЧНЫЕ лечебно-профилактические сыворотки и иммуноглобулины ДОНОРСКИЕ Специально Обычные иммунизи- рованных доноров ПЛАЦЕНТАРНЫЕ

Слайд 73

Гомологичные сыворотки

получают из:
крови доноров, перенесших инфекционное заболевание:
- коревая,
-

Гомологичные сыворотки получают из: крови доноров, перенесших инфекционное заболевание: - коревая, -
паротитная,
- оспенная.
специально иммунизированных людей-доноров:
- противостолбнячная,
- противоботулиническая),
плацентарной или абортной крови.
Гомологичные сыворотки менее иммуногенны.

Слайд 74

Иммуноглобулины

– специфические белки, полученные из сывороток путем очистки от балластных веществ.
Препараты

Иммуноглобулины – специфические белки, полученные из сывороток путем очистки от балластных веществ.
иммуноглобулинов, полученные из крови человека не иммуногенны для него, тогда как гетерологичные иммуноглобулины являются иммуногенными.

Слайд 75

Иммуноглобулины

Выпускают 2 вида иммуноглобулинов:
Нормальный иммуноглобулин
Специфический иммуноглобулин  

Иммуноглобулины Выпускают 2 вида иммуноглобулинов: Нормальный иммуноглобулин Специфический иммуноглобулин

Слайд 76

Нормальный иммуноглобулин

– готовят из смеси сывороток крови разных людей.
Он содержит

Нормальный иммуноглобулин – готовят из смеси сывороток крови разных людей. Он содержит
антитела против разных возбудителей: например, кори, гриппа, полиомиелита, коклюша, дифтерии и других.