Слайд 2Современные способы защиты ОТТ
Рациональный выбор трассы прокладки и сооружений.
Изоляция поверхности металла от
агрессивной среды (пассивный метод защиты).
Воздействие на металл для повышения коррозионной стойкости.
Воздействие на окружающую среду для снижения агрессивности.
Поддержание такого энергетического состояния металла, при котором окисление заторможено (активный метод защиты).
Ограничение величины блуждающих токов.
Данные методы защиты могут быть использованы в сочетании друг с другом, а также применяться отдельно
Слайд 6Горизонтальные анодные заземлители
Слайд 7Вертикальные анодные заземлители
Слайд 8Глубинное анодное заземление
Слайд 10Магниевые протекторы
Из-за высокого рабочего потенциала магниевого протекторного сплава (минус 1,45 В по
хлорсеребряному электроду сравнения) происходит быстрый износ протекторов и поэтому не представляется возможным с помощью этих протекторов осуществить защиту на приемлемый для практики длительный срок.
Следует отметить также что у магния и магниевых сплавов, в отличие от цинка и алюминия, отсутствует поляризация, сопровождаемая уменьшением токоотдачи.
Область применения
ВАЖНО! Нежелательно применение магниевых протекторов для защитывнутренней поверхности танков, резервуаров других емкостей для хранения, отстоя или перевозки нефти и нефтепереработки, так как магниевые протекторы являются крайне взрывопожароопасными (при соударении магния со сталью образуются искры), а при работе магниевых протекторов выделяется газообразный водород, который сам способен создавать взрывопожароопасную среду.
Наиболее выгодно применение магниевых протекторов для защиты трубопроводов, днищ резервуаров снаружи, металлоконструкций, работающих в среде пресной воды, атмосферных условиях, зонах переменного смачивания и грунтах с высоким удельным сопротивлением.
Слайд 11Цинковые протекторы
Протекторы из цинкового сплава полностью взрывопожаробезопасны, что позволяет их применять на
объектах, к которым предъявляются жесткие требования по взрывопожаробезопасности. Кроме того, при их анодном растворении не образуются продукты, загрязняющие рабочую среду.
Область применения
Опыт показывает, что в песчано-парафинистых отложениях на днищах резервуаров из-за их невысокой электропроводности анодной активности алюминиевого сплава недостаточно. Поэтому, учитывая, что протекторы из цинкового сплава имеют более высокий рабочий потенциал, чем протекторы из алюминиевого сплава, для защиты от коррозии внутренней поверхности нефтяных резервуаров, в первую очередь, днищ и нижних поясов, наиболее рационально применять протекторы из цинкового сплава.
Слайд 12Алюминиевые протекторы
Короткозамкнутые протекторы из сплава с повышенной анодной активностью предназначены для защиты
днищ резервуаров, подверженных накоплению песчано- парафиновых отложений, удельная электропроводность которых значительно ниже, чем у пластовых вод. Такой материал характеризуется величиной рабочего и стационарного отрицательного потенциала по водородному электроду сравнения соответственно 0,85-0,9 В. Применение таких сплавов позволяет также обеспечить защиту конструкции при наличии в агрессивной среде сульфатвосстанавливающих бактерий, присутствующих в нефти практически всегда.
Браслетные алюминиевые протекторы позволяют защитить сварные стыковые соединения промысловых трубопроводов, которые наиболее уязвимы для коррозии.
Слайд 13Протекторная защита магистральных трубопроводов
При проектировании протекторной защиты трубопроводов решают как прямую задачу
(определение протяженности зоны защиты установки при заданном количестве протекторов), так и обратную (определение необходимого числа протекторов для защиты трубопровода известной длины).
При решении прямой задачи длина зоны защиты протекторной установки на изолированном трубопроводе определяется с учетом потенциала протектора до подключения его к трубопроводу и сопротивления растеканию тока протекторной установки, которое, в свою очередь, зависит от сопротивления растеканию тока одиночного протектора, числа протекторов в группе и коэффициента, учитывающего взаимное экранирование протекторов в группе.
При решении обратной задачи число протекторов в группе, необходимое для защиты участка трубопровода заданной длины определяется как отношение величины необходимого защитного тока к токоотдаче одного протектора. Величина необходимого защитного тока определяется из условия создания на трубопроводе наложенной разности потенциалов не ниже минимальной.
ВАЖНО! Если сдвиг потенциала в отрицательную сторону превысит определённое значение, возможна так называемая "перезащита", связанная с выделением водорода, изменением состава приэлектродного слоя и другими явлениями, что может привести к ускорению коррозии защищаемого материала.
Слайд 14Расчет протекторной защиты внутренней поверхности днища и первого
пояса стальных резервуаров
Основной задачей расчета
является определение количества протекторов, располагаемых на днище резервуара, и срок их службы.
Число протекторов можно определить исходя из радиуса резервуара, зоны действия одного протектора и уровня подтоварной воды в резервуаре.
Срок службы оценивается с учетом технологического коэффициента, характеризующего условия работы резервуара, массы протектора и силы его тока, которая, в свою очередь, зависит от диаметров протектора и электролита (резервуара), поляризационного сопротивления протектора, разности потенциалов протектор-днище при разомкнутой цепи и поправочного коэффициента, зависящего от уровня подтоварной воды.
Слайд 15Расчет протекторной защиты днища стальных резервуаров от грунтовой коррозии
Основная задача - определение
числа протекторов и срока их службы.
В основе расчета - достижение плотностью тока в цепи протектор-резервуар защитного значения, которое выбирают в зависимости от переходного сопротивления изоляции днища и удельного электрического сопротивления грунтов. Алгоритм расчета :
1. Оценивается переходное сопротивление изоляции днища резервуара исходя из переходного сопротивления системы резервуар-грунт, определяемого по показаниям прибора и площади днища резервуара;
2. Защитная плотность тока принимается в зависимости от удельного электрического сопротивления грунта и находится сила тока, необходимая для защиты днища резервуара от коррозии;
3. Проверяется возможность полной защиты резервуара от коррозии с помощью протекторов;
4. Определяется ориентировочное число протекторов исходя из сопротивления растеканию тока с протектора, сопротивления соединительного провода, силы тока и абсолютных значений потенциалов резервуара и протектора до подключения;
5. После корректировки числа протекторов с помощью коэффициента экранирования, принимается их окончательное количество;
6. На заключительном этапе оценивается срок службы протектора с учетом его КПД, массы, силы тока, коэффициента использования и теоретического эквивалента материала протектора.
Слайд 16Изолирующие вставки
(пример)
Технические характеристики:
• Рабочее давление до 10 МПа
• Тройной запас
прочности по давлению
• Электрическое сопротивление при постоянном напряжении 500 В не менее 0,1 МОм
• Обеспечение электрической прочности при действии 5 кВ переменного напряжения частотой 50 Гц в течении 1 мин
• Температура эксплуатации -50...+50°С
• Температура транспортируемой среды от -20…+45oС
Изготовляется по ТУ 1469-027-05015070-01 ВСН 39-1.22-007-2002
Слайд 17Мероприятия по защите от коррозии
на этапе проектирования
Оценка агрессивности среды, которая необходима доя
правильного выбора материала оборудования и рационального его размещения.
Оценка и выбор материалов, совместимость материалов друг с другом.
Оценка характера соединения материалов с целью исключения застойных зон, углублений, обеспечения минимальной площади контакта поверхности с агрессивной средой, предотвращения разбрызгивания жидкостей.
Выбор крепежных соединений.