Асимптоты функции

Содержание

Слайд 5

Часть 2.Производная функции

Определение производной
Геометрический смысл производной
Связь между непрерывностью и дифференцируемостью
Производные основных элементарных

Часть 2.Производная функции Определение производной Геометрический смысл производной Связь между непрерывностью и
функций
Правила дифференцирования
Производная сложной функции
Производная неявно заданной функции
Логарифмическое дифференцирование

Слайд 6

Live version

Live version

Слайд 7

Live version

Live version

Слайд 8

Определение производной

Пусть функция y = f(x) определена в некотором интервале (a; b).

Аргументу

Определение производной Пусть функция y = f(x) определена в некотором интервале (a;
x придадим некоторое приращение :

х

f(x )

x+Δx

f(x+ Δx )

Найдем соответствующее приращение функции:

Если существует предел

то его называют производной функции y = f(x) и обозначают одним из символов:

Слайд 9

Определение производной

Итак, по определению:

Функция y = f(x) , имеющая производную в каждой

Определение производной Итак, по определению: Функция y = f(x) , имеющая производную
точке интервала (a; b), называется дифференцируемой в этом интервале; операция нахождения производной функции называется дифференцированием.

Значение производно функции y = f(x) в точке x0 обозначается одним из символов:

Если функция y = f(x) описывает какой – либо физический процесс, то f ’(x) есть скорость протекания этого процесса – физический смысл производной.

Слайд 10

Геометрический смысл производной

Возьмем на непрерывной кривой L две точки М и М1:

х

f(x

Геометрический смысл производной Возьмем на непрерывной кривой L две точки М и
)

x+Δx

М

М1

f(x+ Δx )

Через точки М и М1 проведем секущую и обозначим через φ угол наклона секущей.

Слайд 11

Геометрический смысл производной

Производная f ’(x) равна угловому коэффициенту касательной к графику функции

Геометрический смысл производной Производная f ’(x) равна угловому коэффициенту касательной к графику
y = f(x) в точке, абсцисса которой равна x.

Если точка касания М имеет координаты (x0; y0 ), угловой коэффициент касательной есть k = f ’(x0 ).

Уравнение прямой с угловым коэффициентом:

Прямая, перпендикулярная касательной в точке касания, называется нормалью к кривой.

Уравнение касательной

Уравнение нормали

Слайд 12

Связь между непрерывностью и дифференцируемостью функции

Если функция f(x) дифференцируема в некоторой точке

Связь между непрерывностью и дифференцируемостью функции Если функция f(x) дифференцируема в некоторой
, то она непрерывна в ней.

Теорема

Пусть функция y = f(x) дифференцируема в некоторой точке х, следовательно существует предел:

Доказательство:

где

при

По теореме о связи функции, ее предела и бесконечно малой функции

Функция y = f(x) – непрерывна.

Обратное утверждение не верно: непрерывная функция может не иметь производной.

Слайд 13

Производные основных элементарных функций

Производные основных элементарных функций

Слайд 14

Правила дифференцирования

Пусть u(x) , v(x) и w(x) – дифференцируемые в некотором интервале

Правила дифференцирования Пусть u(x) , v(x) и w(x) – дифференцируемые в некотором
(a; b) функции, С – постоянная.

 

Слайд 15

Пример

Вычислить производную функции

Пример Вычислить производную функции

Слайд 16

Пример

Вычислить производную функции

Данную функцию можно представить следующим образом:

Коротко:

Пример Вычислить производную функции Данную функцию можно представить следующим образом: Коротко:

Слайд 17

Производная неявно заданной функции

Если функция задана уравнением y = f(х) , разрешенным

Производная неявно заданной функции Если функция задана уравнением y = f(х) ,
относительно y, то говорят, что функция задана в явном виде.

Для нахождения производной неявно заданной функции необходимо продифференцировать уравнение по х, рассматривая при этом y как функцию от х, и полученное выражение разрешить относительно производной.

Под неявным заданием функции понимают задание функции в виде уравнения не разрешенного относительно y:

Слайд 18

Производная функции, заданной параметрически

 

 

 

 

 

Производная функции, заданной параметрически

Слайд 19

Логарифмическое дифференцирование

В ряде случаев для нахождения производной целесообразно заданную функцию сначала прологарифмировать,

Логарифмическое дифференцирование В ряде случаев для нахождения производной целесообразно заданную функцию сначала
а затем результат продифференцировать.

Такую операцию называют логарифмическим дифференцированием.