Содержание
- 2. Mathematical models A mathematical model is a description of a system or problem using mathematical concepts,
- 3. Abstract algebra Algebraic structures Group, Abelian group Field Ring Vector space Vector space over a field
- 4. Linear algebra Vector space Vectors Components (coordinates) Basic operations Linear combination of vectors Linearly dependent or
- 5. Vector spaces Generators Basis Basis extension Steiner’s theorem
- 6. Matrices Type of matrix Matrix addition Matrix multiplication Scalar multiplication of matrix Inversion of square matrix
- 7. System of linear equations Ax = b _______________________________________________________________________________ x1.a1+ x2.a2+ … + xn.an = b ____________________________________________________
- 8. Solution of system of linear equations Gauss elimination Jordanian elimination Row echelon form Reduced row echelon
- 9. Jordanian elimination Elementary row (column) operation Exchange the rows Multiplying row by a scalar Add one
- 10. Solubility of system of linear equations The system has no solution (in this case, we say
- 11. Mathematical programming Optimization model min {f(x) ⏐ qi(x) ≤ 0 , i = 1, ..., m
- 12. General optimality problems Feasibility problem The satisfiability problem, also called the feasibility problem, is just the
- 13. Classification of optimization models More then one constraint Number of criteria Single optimization Multiple optimization Type
- 14. Linear optimization model
- 15. Fundamental Theorem of LP If the optimal value of the objective function in a linear programming
- 16. Fundamentals theorems Basic solution of system of linear equations is represented by corner points of the
- 17. Terminology Variables Decision variables Slack variables Artificial variables Constraints also called conditions or restrictions Capacities or
- 18. Terminology Feasible solution – feasibility region, search space, choice set Basic solution Infeasible solution Optimal solution
- 19. Existence of solution Nonexistence of solution If the feasible region is empty (that is, there are
- 20. Matrices as basic vectors Column space of a matrix is the set of all possible linear
- 21. Graphical representation I Convex polytop Bounded Unbounded
- 22. Graphical representation II Column space of matrix of coefficients
- 23. Simplex Method Simplex method Starts with a feasible solution Tests whether or not it is optimum.
- 24. The Simplex Algorithm
- 25. The Simplex Algorithm Converting LP into standard and canonical form Definition of slack variables Definition of
- 26. Solubility of linear model One optimal solution Infinite number of optimal solution Alternate solutions - If
- 27. Simple transportation problem Suppliers, source – supply of i-th supplier ai Demands, destinations – demand of
- 28. Transportation table
- 29. Balanced transportation model Σj xij = ai , i=1,…,m Σi xij = bj , j=1,…,n xij
- 30. Balanced transportation system Total supply = total demand Σj ai = Σj bj dummy supplier dummy
- 31. Solving of the TP Initial solution must be feasible Northwest-Corner method (NWCM) Least-Cost method (LCM) Vogel's
- 32. Transportation method Step 0 – Balanced transportation system Step 1 – Initial basic solution Step 2
- 33. Degeneracy The basic solution is degenerate if some of basic variables is equal to zero. Degeneracy
- 34. Result analysis Optimal solution Alternative solution Suboptimal solution Perspective routes Routes substitution Possible shipped amount
- 35. Vehicle routing problem Given a list of cities and their pairwise distances The task is to
- 36. Travelling salesman problem Given a list of cities and their pairwise distances The task is to
- 37. Solving of TSP Try all permutations of points N! possibilities Principle: adding of branches to pass
- 38. Vehicle routing problem Majer‘s method Central point Selecting the most distant point from the central point
- 39. Game Model of conflict or competition Cooperative, non-cooperative games Antagonistic – non-antagonistic game Time – simultaneous
- 40. Solution of game Each player tries to maximize his welfare at the expense of the others.
- 41. Model of game Tree (extensive) form of model Game tree (decision tree - moves) Normal form
- 42. Matrix game Two-person game Finite number of strategies for each player Zero-sum game Sum of payoffs
- 43. Pure and mixed strategy Pure strategy One best strategy How to find it – saddle point
- 44. Matrix game solution Theorem The optimal pure strategies exist in the matrix game, if and only
- 45. Decision model Model elements Decision alternatives States of nature Decision matrix (table) – payoffs associated with
- 46. Solution of decision problems Selection of the dominating alternative Selection of the best alternative Selection of
- 47. Selection of the dominating alternative Outcome dominance: aI dominates aK Event dominance: aI dominates aK Probabilistic
- 48. Selection of the best alternative Decision-making under certainty Decision-making under uncertainty Maximax rule Wald criterion -
- 49. Multiple Objective Decision Making Infinite Number of Alternatives At least two criteria Example – Linear multi
- 50. Multiple Attribute Decision Making Finite Number of Alternatives Evaluation of all alternatives with respect to all
- 51. Basic terms Ideal alternative Nadir alternative Dominating and dominated alternative The best alternative – preferred alternative
- 52. The aim of MADM Selection of the best alternatives (one or more) Dichotomizing into the efficient
- 53. Utility, utility function Utility is a measure of satisfaction All attribute values can be expresed by
- 54. Utility function A utility function represents a preference relation Mapping of attribute values into interval 〈0,
- 55. Informations Inter and intra attribute comparisons Criteria preferences Alternatives preferences Not necessary in numerical form No
- 56. Methods for assesing information Sequence Method Criteria/alternatives are arranged according their importance to a sequence from
- 57. MADM methods Scoring or sequence methods Standard level methods Simple additive weighting method Attributes must be
- 59. Скачать презентацию
























































Метод обратной матрицы решения систем линейных уравнений
Решение систем уравнений с помощью обратной матрицы
Презентация на тему Формулы
Координатная плоскость
Разработка урока математики (коррекционной) школы. 7 класс
Сложение и вычитание дробей
Уравнение прямой на координатной плоскости
Презентация на тему Уравнение
15 задание. Виды. Делимость. Числовая последовательность. Конъюнкция. Множества
Презентация на тему Прямоугольник. Ромб. Квадрат
Вычислить. Задание на лето
Аттестационная работа. Методическая разработка по выполнению исследовательской работы по математике
Окружность. Вписанные углы
Презентация на тему Прямоугольный треуголиник: синус, косинус, тангенс угла
Тайны математики 2
Отношения и пропорции. Игра Кот в мешке
Формирование действия моделирования через решение текстовых задач
Деление двузначных чисел
Логика Закон тождества
Pakāpe ar naturālu kāpinātāju un tās Īpašība
Приведение дробей к общему знаменателю Молодых Наталья Андреевна Учитель математики средней школы № 3 г.Каменска- Уральского Св
Площадь параллелограмма
Экономические задачи VI. Задания 1-4, ЕГЭ
Показательная функция
Функции и их свойства. Область определения и область значений функции
Вычисление производной степенной функции. Правила дифференцирования. Производные суммы, разности, произведения, частного
Свойства степени с целым отрицательным показателем
Векторы в пространстве