Геометрия. Планиметрия

Содержание

Слайд 2

ТРЕУГОЛЬНИКИ

ТРЕУГОЛЬНИКИ

Слайд 3

ТРЕУГОЛЬНИКИ

Каждая медиана делит треугольник на два равновеликих треугольника

ТРЕУГОЛЬНИКИ Каждая медиана делит треугольник на два равновеликих треугольника

Слайд 4

ТРЕУГОЛЬНИКИ

Центр окружности, вписанной в треугольник, является точкой пересечения его биссектрис

ТРЕУГОЛЬНИКИ Центр окружности, вписанной в треугольник, является точкой пересечения его биссектрис

Слайд 5

ТРЕУГОЛЬНИКИ

Если угол одного треугольника равен углу другого треугольника, то площади этих треугольников

ТРЕУГОЛЬНИКИ Если угол одного треугольника равен углу другого треугольника, то площади этих
относятся как произведения сторон, заключающих равные углы

Слайд 6

ПЛОЩАДЬ ТРЕУГОЛЬНИКА

Где a- сторона треугольника, ha – высота

a

b

c

ПЛОЩАДЬ ТРЕУГОЛЬНИКА Где a- сторона треугольника, ha – высота a b c

Слайд 7

ПЛОЩАДЬ ТРЕУГОЛЬНИКА

Где b, c- стороны треугольника, и угол A- лежит против стороны

ПЛОЩАДЬ ТРЕУГОЛЬНИКА Где b, c- стороны треугольника, и угол A- лежит против стороны a
a

Слайд 8

ПЛОЩАДЬ ТРЕУГОЛЬНИКА

Где a,b,c – стороны треугольника ,
R- радиус окружности, описанной около треугольника

R

ПЛОЩАДЬ ТРЕУГОЛЬНИКА Где a,b,c – стороны треугольника , R- радиус окружности, описанной около треугольника R

Слайд 9

ПЛОЩАДЬ ТРЕУГОЛЬНИКА

Где r –радиус вписанной окружности,
p- полупериметр

ПЛОЩАДЬ ТРЕУГОЛЬНИКА Где r –радиус вписанной окружности, p- полупериметр

Слайд 10

ПЛОЩАДЬ ТРЕУГОЛЬНИКА (ФОРМУЛА ГЕРОНА)

Где a,b,c – стороны треугольника
p– полупериметр треугольника

ПЛОЩАДЬ ТРЕУГОЛЬНИКА (ФОРМУЛА ГЕРОНА) Где a,b,c – стороны треугольника p– полупериметр треугольника

Слайд 11

ТРЕУГОЛЬНИКИ

ТРЕУГОЛЬНИКИ

Слайд 12

ПРЯМОУГОЛЬНЫЙ ТРЕУГОЛЬНИК

ПРЯМОУГОЛЬНЫЙ ТРЕУГОЛЬНИК

Слайд 13

ПРЯМОУГОЛЬНЫЙ ТРЕУГОЛЬНИК

Радиус окружности описанной около прямоугольного треугольника равен половине гипотенузы

R

ПРЯМОУГОЛЬНЫЙ ТРЕУГОЛЬНИК Радиус окружности описанной около прямоугольного треугольника равен половине гипотенузы R

Слайд 14

ПРЯМОУГОЛЬНЫЙ ТРЕУГОЛЬНИК

Сумма острых углов прямоугольного треугольника равно 900
Катет прямоугольного треугольника, лежащий против

ПРЯМОУГОЛЬНЫЙ ТРЕУГОЛЬНИК Сумма острых углов прямоугольного треугольника равно 900 Катет прямоугольного треугольника,
угла в 300, равен половине гипотенузы

Слайд 15

ПРЯМОУГОЛЬНЫЙ ТРЕУГОЛЬНИК

Sin A – отношение противолежащего катета к прилежащему

A

Sin A=

a

с

ПРЯМОУГОЛЬНЫЙ ТРЕУГОЛЬНИК Sin A – отношение противолежащего катета к прилежащему A Sin A= a с

Слайд 16

ПРЯМОУГОЛЬНЫЙ ТЕУГОЛЬНИК

Cos A – отношение прилежащего катета к противолежащему

A

Cos A=

b

с

ПРЯМОУГОЛЬНЫЙ ТЕУГОЛЬНИК Cos A – отношение прилежащего катета к противолежащему A Cos A= b с

Слайд 17

ПРЯМОУГОЛЬНЫЙ ТРЕУГОЛЬНИК

Tg A – отношение противолежащего катета к прилежащему

A

tg A=

a

b

ПРЯМОУГОЛЬНЫЙ ТРЕУГОЛЬНИК Tg A – отношение противолежащего катета к прилежащему A tg A= a b

Слайд 18

ПРЯМОУГОЛЬНЫЙ ТРЕУГОЛЬНИК

Ctg A – отношение прилежащего катета к противолежащему

сtg A=

b

a

A

ПРЯМОУГОЛЬНЫЙ ТРЕУГОЛЬНИК Ctg A – отношение прилежащего катета к противолежащему сtg A= b a A

Слайд 19

РАВНОБЕДРЕННЫЙ ТРЕУГОЛЬНИК

Углы при основании равны
Медиана – является и высотой и биссектрисой

РАВНОБЕДРЕННЫЙ ТРЕУГОЛЬНИК Углы при основании равны Медиана – является и высотой и биссектрисой

Слайд 20

ЗАДАЧИ

В остроугольном треугольнике MPK высота PH равна ,а сторона PM равна 50.

ЗАДАЧИ В остроугольном треугольнике MPK высота PH равна ,а сторона PM равна
Найдите Cos угла М

K

H

M

P

Слайд 21

ЗАДАЧИ

В треугольнике АВС АВ = ВС. Угол САВ = 34о. Найдите угол

ЗАДАЧИ В треугольнике АВС АВ = ВС. Угол САВ = 34о. Найдите
между стороной АВ и высотой, проведенной из вершины В.

Слайд 22

ЗАДАЧИ

В треугольнике АВС проведена высота ВК = 12 см. Известно, что синус

ЗАДАЧИ В треугольнике АВС проведена высота ВК = 12 см. Известно, что
угла САВ равен 0,6. Найдите длину стороны АВ. Ответ дайте в см.

Слайд 23

ЗАДАЧИ

Стороны AC, AB, BC треугольника ABC равны 2√5, √11 и 2 соответственно. Точка K расположена вне

ЗАДАЧИ Стороны AC, AB, BC треугольника ABC равны 2√5, √11 и 2
треугольника AB, причём отрезок KC пересекает сторону AB в точке, отличной от B. Известно, что треугольник с вершинами K, A и C подобен исходному. Найдите косинус угла AKC, если ∠KAC>90

Слайд 24

ЗАДАЧИ

Лестницу длиной 3 м прислонили к дереву. На какой высоте (в метрах) находится

ЗАДАЧИ Лестницу длиной 3 м прислонили к дереву. На какой высоте (в
верхний её конец, если нижний конец отстоит от ствола дерева на 1,8 м?

Слайд 25

ЗАДАЧИ

В равностороннем треугольнике ABC точки M, N, K —— середины сторон АВ, ВС,

ЗАДАЧИ В равностороннем треугольнике ABC точки M, N, K —— середины сторон
СА соответственно. Докажите, что треугольник MNK —— равносторонний.
Имя файла: Геометрия.-Планиметрия.pptx
Количество просмотров: 37
Количество скачиваний: 0