- Главная
- Математика
- Методы обработки данных и способы их представления в научном исследовании
Содержание
- 2. Обработка результатов исследования. Первичная обработка данных. Результаты каждого исследования важно обрабатывать по возможности тотчас же по
- 3. Математическая обработка данных. Для определения способов математико- статистической обработки, прежде всего, необходимо оценить характер распределения по
- 4. Ориентируясь на эти характеристики нормального распределения, можно оценить степень близости к нему рассматриваемого распределения. Одной из
- 6. Скачать презентацию
Слайд 2Обработка результатов исследования.
Первичная обработка данных.
Результаты каждого исследования важно обрабатывать по
Обработка результатов исследования.
Первичная обработка данных.
Результаты каждого исследования важно обрабатывать по
возможности тотчас же по его окончании, пока память экспериментатора может подсказать те детали, – которые почему-либо не зафиксированы, но представляют интерес для понимания существа дела.
При обработке собранных данных может оказаться, что их или недостаточно, или они противоречивы и поэтому не дают оснований для окончательных выводов. В таком случае исследование необходимо продолжить, внеся в него требуемые дополнения.
В большинстве случаев обработку целесообразно начать с составления таблиц (сводных таблиц) полученных данных.
И для ручной, и для компьютерной обработки в исходную сводную таблицу чаще всего заносят начальные данные.
В последнее время преимущественной формой математико-статистической обработки стала компьютерная, поэтому в таблицу целесообразно внести все интересующие вас признаки в форме десятичного числа, т.е. предварительно пересчитать минуты в десятичные доли часа, секунды – в десятичные доли минуты, количество месяцев – в десятичную долю года и т. д. Это необходимо, поскольку формат данных для большинства используемых компьютерных программ накладывает свои ограничения.
При обработке собранных данных может оказаться, что их или недостаточно, или они противоречивы и поэтому не дают оснований для окончательных выводов. В таком случае исследование необходимо продолжить, внеся в него требуемые дополнения.
В большинстве случаев обработку целесообразно начать с составления таблиц (сводных таблиц) полученных данных.
И для ручной, и для компьютерной обработки в исходную сводную таблицу чаще всего заносят начальные данные.
В последнее время преимущественной формой математико-статистической обработки стала компьютерная, поэтому в таблицу целесообразно внести все интересующие вас признаки в форме десятичного числа, т.е. предварительно пересчитать минуты в десятичные доли часа, секунды – в десятичные доли минуты, количество месяцев – в десятичную долю года и т. д. Это необходимо, поскольку формат данных для большинства используемых компьютерных программ накладывает свои ограничения.
Слайд 3Математическая обработка данных.
Для определения способов математико- статистической обработки, прежде всего, необходимо
Математическая обработка данных.
Для определения способов математико- статистической обработки, прежде всего, необходимо
оценить характер распределения по всем используемым параметрам.
Для параметров, имеющих нормальное распределение или близкое к нормальному, можно использовать методы параметрической статистики, которые во многих случаях являются более мощными, чем методы непараметрической статистики.
Достоинством последних является то, что они позволяют проверять статистические гипотезы независимо от формы распределения.
Важнейшими статистическими характеристиками являются:
а) средняя арифметическая;
б) среднее квадратическое отклонение;
в) коэффициент вариации;
Для параметров, имеющих нормальное распределение или близкое к нормальному, можно использовать методы параметрической статистики, которые во многих случаях являются более мощными, чем методы непараметрической статистики.
Достоинством последних является то, что они позволяют проверять статистические гипотезы независимо от формы распределения.
Важнейшими статистическими характеристиками являются:
а) средняя арифметическая;
б) среднее квадратическое отклонение;
в) коэффициент вариации;
Слайд 4Ориентируясь на эти характеристики нормального распределения, можно оценить степень близости к нему
Ориентируясь на эти характеристики нормального распределения, можно оценить степень близости к нему
рассматриваемого распределения.
Одной из наиболее часто встречающихся задач при обработке данных является оценка достоверности различий между двумя или более рядами значений.
В математической статистике существует ряд способов для ее решения.
Компьютерный вариант обработки данных стал в настоящее время наиболее распространенным. Во многих прикладных статистических программах есть процедуры оценки различий между параметрами одной выборки или разных выборок. При полностью компьютеризованной обработке материала нетрудно в нужный момент использовать соответствующую процедуру и оценить интересующие различия.
Формулирование выводов.
Выводы – это утверждения, выражающие в краткой форме содержательные итоги исследования, они в тезисной форме отражают то новое, что получено самим автором.
Частой ошибкой является то, что автор включает в выводы общепринятые в науке положения – уже не нуждающиеся в доказательствах. Решение каждой из перечисленных во введении задач должно быть определенным образом отражено в выводах.
Одной из наиболее часто встречающихся задач при обработке данных является оценка достоверности различий между двумя или более рядами значений.
В математической статистике существует ряд способов для ее решения.
Компьютерный вариант обработки данных стал в настоящее время наиболее распространенным. Во многих прикладных статистических программах есть процедуры оценки различий между параметрами одной выборки или разных выборок. При полностью компьютеризованной обработке материала нетрудно в нужный момент использовать соответствующую процедуру и оценить интересующие различия.
Формулирование выводов.
Выводы – это утверждения, выражающие в краткой форме содержательные итоги исследования, они в тезисной форме отражают то новое, что получено самим автором.
Частой ошибкой является то, что автор включает в выводы общепринятые в науке положения – уже не нуждающиеся в доказательствах. Решение каждой из перечисленных во введении задач должно быть определенным образом отражено в выводах.