ОГЭ 20-21. Задачи

Содержание

Слайд 2

ЗАДАЧА №1

Четырехугольник АВСD вписан в окружность. ∠ АВС равен 38°, ∠САD равен

ЗАДАЧА №1 Четырехугольник АВСD вписан в окружность. ∠ АВС равен 38°, ∠САD
33°. Найдите угол АВD. Ответ дайте в градусах.

Дано: ∠АВС = 38°, ∠САD = 33°.
Найти: ∠АВD.

Решение:

1) ∠DBC = ∠CAD = 33°, так как вписанные углы, опирающиеся на одну и ту же дугу DC.

2) ∠АВD = ∠AВC – ∠DBC = 38° – 33° = 5°

Ответ: 5.

Слайд 3

Площадь круга равна 69. Найдите площадь сектора этого круга, центральный угол которого

Площадь круга равна 69. Найдите площадь сектора этого круга, центральный угол которого
равен 120°.

Дано: Sкруга = 69, угол кругового сектора равен 120°.
Найти: Sсектора.

Решение:

Ответ: 23.

ЗАДАЧА №2

Слайд 4

Угол А четырехугольника АВСD, вписанного в окружность, равен 33°. Найдите угол С

Угол А четырехугольника АВСD, вписанного в окружность, равен 33°. Найдите угол С
этого четырехугольника. Ответ дайте в градусах.

Дано: АВСD вписан в окружность, ∠А = 33°.
Найти: ∠С.

Решение:

∠C = 180° – ∠A = 180° – 33° = 147°, так как сумма противоположных углов вписанного четырехугольника равна 180°.

Ответ: 147.

ЗАДАЧА №3

Слайд 5

Отрезки АС и BD – диаметры окружности с центром О. Угол АСВ

Отрезки АС и BD – диаметры окружности с центром О. Угол АСВ
равен 53°. Найдите угол АОD. Ответ дайте в градусах.

Дано: АС и BD – диаметры окружности,
∠АСВ = 53°.
Найти: ∠ АОD.

Решение:

1) АCВ = 53° – вписанный угол, опирающийся
на ᴗ АВ, поэтому ᴗ АВ = 53° ⋅ 2 = 106°, так как вписанный угол измеряется половиной дуги, на которую он опирается.

Ответ: 74.

2) BD – диаметр, значит ᴗ ВАD = 180°.

3) ∠ АОD – центральный угол, опирающийся на ᴗ АD, следовательно ∠ АОD = ᴗ АD = 180° – 106° = 74°.

ЗАДАЧА №4

Слайд 6

Центр окружности, описанной около треугольника АВС, лежит на стороне АВ. Радиус окружности

Центр окружности, описанной около треугольника АВС, лежит на стороне АВ. Радиус окружности
равен 20,5. Найдите ВС, если АС = 9.

Дано: АВ – d; r = 20,5; АС = 9.
Найти: ВС.

Решение:

1) ∠C = 90°, так как угол, опирающийся на диаметр, значит треугольник АВС прямоугольный.

Ответ: 40.

2) r = 20,5, следовательно АВ = 20,5 ⋅ 2 = 41

3) По теореме Пифагора: АВ2 = АС2 + ВС2
412 = 92 + ВС2 ВС2 = 1681 – 81
ВС2 = 1600 ВС = 40

ЗАДАЧА №5

Слайд 7

Точка О – центр окружности, на которой лежат точки А, В и

Точка О – центр окружности, на которой лежат точки А, В и
С. Известно, что ∠АВС = 61° и ∠ОАВ = 8°. Найдите угол ВСО. Ответ дайте в градусах.

Дано: ∠АВС = 61°, ∠ОАВ = 8°.
Найти: ∠ ВСО.

Решение:

1) Проведем радиус ОВ, АО = ВО = СО = r.

Ответ: 53.

2) Треугольник АОВ – равнобедренный, значит ∠А = ∠АВО = 8°.

3) Треугольник ВОС – равнобедренный, значит
∠ВСО = ∠ОВС= 61° – 8° = 53°.

ЗАДАЧА №6

Слайд 8

На окружности с центром О отмечены точки А и В так, что

На окружности с центром О отмечены точки А и В так, что
: ∠АОВ = 45°. Длина меньшей дуги равна 91. Найдите длину большей дуги.

Дано: ∠АОВ = 45°, длина меньшей дуги
равна 91.
Найти: длину большей дуги.

Решение:

Ответ: 637.

ЗАДАЧА №7

Слайд 9

Угол А четырехугольника АВСD, вписанного в окружность, равен 33°. Найдите угол С

Угол А четырехугольника АВСD, вписанного в окружность, равен 33°. Найдите угол С
этого четырехугольника. Ответ дайте в градусах.

Дано: АВСD вписан в окружность,
∠А = 77°.
Найти: ∠С.

Решение:

∠C = 180° – ∠A = 180° – 77° = 103°, так как сумма противоположных углов вписанного четырехугольника равна 180°.

Ответ: 103.

ЗАДАЧА №8

Слайд 10

Четырехугольник АВСD описан около окружности, АВ = 8, ВС = 12, СD

Четырехугольник АВСD описан около окружности, АВ = 8, ВС = 12, СD
= 13. Найдите АD.

Дано: АВСD описан около окружности,
АВ = 8, ВС = 12, СD = 13.
Найти: АD.

Решение:

АD + ВС = АВ + СD, так как суммы
противоположных сторон описанного четырехугольника равны.

Ответ: 9.

2) АD + 12 = 8 + 13
АD = 21 – 12
АD = 9

ЗАДАЧА №9

Слайд 11

Треугольник АВС вписан в окружность с центром О. Точки О и С

Треугольник АВС вписан в окружность с центром О. Точки О и С
лежат в одной полуплоскости относительно прямой АВ. Найдите угол АСВ, если угол АОВ равен 73°.

Дано: треугольник АВС вписан в
окружность, ∠АОВ = 73°.
Найти: ∠АСВ.

Решение:

∠ АОВ = 73° – центральный угол, опирающийся на ᴗ АВ, следовательно ᴗ АВ = 73°.

Ответ: 36,5.

2) ∠АСВ = 73° : 2 = 36, 5° , так как вписанный
угол измеряется половиной дуги, на которую он
опирается.

ЗАДАЧА №10

Слайд 12

ЗАДАЧА №11

Радиус окружности, вписанной в трапецию, равен 12. Найти высоту этой трапеции.
Дано:

ЗАДАЧА №11 Радиус окружности, вписанной в трапецию, равен 12. Найти высоту этой
трапеция вписана в окружность, r = 12.
Найти: h.
Решение:
Высота трапеции равна диаметру вписанной
окружности, поэтому h = 2 ⋅ r = 2 ⋅ 12 = 24 .
Ответ: 24.

Слайд 13

ЗАДАЧА №12

Сторона АВ треугольника АВС проходит через центр описанной около него окружности

ЗАДАЧА №12 Сторона АВ треугольника АВС проходит через центр описанной около него
. Найдите ∠ А, если ∠В = 44°. Ответ дайте в градусах.
Дано: треугольник АВС вписан в окружность,
∠В = 44 °.
Найти: ∠А.
Решение:
1)∠C = 90°, так как угол, опирающийся на диаметр, значит треугольник АВС прямоугольный.
2)По теореме о сумме углов треугольника
∠А = 180° – (90° + 44°) = 46°
Ответ: 46.

Слайд 14

ЗАДАЧА №13

Четырехугольник АВСD вписан в окружность. Угол АВD равен 37°, а угол

ЗАДАЧА №13 Четырехугольник АВСD вписан в окружность. Угол АВD равен 37°, а
САD равен 58°. Найдите угол АВС. Ответ дайте в градусах.
Дано: АВСD вписан в окружность,
∠АВD = 37°, ∠САD = 58°.
Найти: ∠АВС.
Решение:

2) ∠САD = 58° – вписанный угол, опирающийся на ᴗ СD,
поэтому ᴗ СD = 58° ⋅ 2 = 116°.
ᴗ АDС = ᴗ АD + ᴗ DС = 74° + 116° = 190°,
значит ∠АВС = 190° : 2 = 95°.
Ответ: 95.

∠АВD = 37° – вписанный угол, опирающийся на ᴗ АD,
поэтому ᴗ АD = 37° ⋅ 2 = 74°.

Слайд 15

ЗАДАЧА №14

Окружность с центром в точке О описана около равнобедренного треугольника АВС,

ЗАДАЧА №14 Окружность с центром в точке О описана около равнобедренного треугольника
в котором АВ = ВС и ∠АВС = 107°. Найдите величину угла ВОС. Ответ дайте в градусах.
Дано: АВС вписан в окружность,
АВ = ВС, ∠АВС = 107°.
Найти: ∠ВОС.
Решение:
1)Треугольник АВС равнобедренный, поэтому в нем углы при основании равны, то есть
∠А = ∠АСВ = (180° – 107°) : 2 = 36,5°.
2)∠ВАС = 36,5° – вписанный угол, опирающийся на ᴗ ВС, поэтому ᴗ ВС = 36,5° ⋅ 2 = 73°.
3)∠ ВОС – центральный угол, опирающийся
на ᴗ ВС, следовательно ∠ ВОС = ᴗ ВС = 73°.
Ответ: 73.

Слайд 16

ЗАДАЧА №15

Радиус окружности, вписанной в равносторонний треугольник, равен 6.
Найдите высоту этого

ЗАДАЧА №15 Радиус окружности, вписанной в равносторонний треугольник, равен 6. Найдите высоту
треугольника.
Дано: треугольник АВС описан около окружности, r = 6.
Найти: h.
Решение:
1) В равностороннем треугольнике любая высота является медианой и биссектрисой и все они пересекаются в одной точке, которая является центром вписанной и описанной окружности.
2) Медианы треугольника точкой пересечения делятся в отношении 2: 1, считая от вершины,
значит h = 6 ⋅ 3 = 18.
Ответ: 18.

Слайд 17

ЗАДАЧА №16

Через точку А, лежащую вне окружности, проведены две прямые. Одна прямая

ЗАДАЧА №16 Через точку А, лежащую вне окружности, проведены две прямые. Одна
касается окружности в точке К.
Другая прямая пересекает окружность в точках В и С, причем АВ = 2, АК = 4. Найдите АС.
Дано: АК – касательная, АС – секущая,
АВ = 2, АК = 4
Найти: АС.
Решение:
АК2 = АВ ⋅ АС
42 = 2 ⋅ АС
АС = 16 : 2
АС = 8
Ответ: 8.

Слайд 18

ЗАДАЧА №17

Касательные в точках А и В к окружности с центром О

ЗАДАЧА №17 Касательные в точках А и В к окружности с центром
пересекаются под углом 82°. Найдите угол АВО. Ответ дайте в градусах.
Дано: касательные в точках А и В пересекаются под углом 82°.
Найти: ∠АВО.
Решение:
1)Обозначим точку пересечения касательных буквой С .
2)Отрезки касательных СА и СВ равны, значит треугольник АСВ равнобедренный,
∠САВ = ∠СВА = (180° – 82°) : 2 = 49°.
3)Радиус окружности, проведенный в точку касания, перпендикулярен касательной, поэтому ∠АВС = 90°.
4)∠АВО = 90° – 49° = 41°
Ответ: 41.
Имя файла: ОГЭ-20-21.-Задачи.pptx
Количество просмотров: 44
Количество скачиваний: 0