вершина. Известно, что AB = 1, а SR = 2. Найдите площадь боковой поверхности.
Решение
Отмечаем упомянутые в условии точки и отрезки на чертеже пирамиды. Отрезок SR принадлежит боковой грани, поэтому наряду с пирамидой и основанием, начертим и её - треугольник BSC.
По формуле площади боковой поверхности правильной пирамиды Sб = Pосн· l/2.
Так как пирамида правильная, то ΔBSC - равнобедренный, и линия, соединяющая середину его основания с вершиной, является не только медианой, но и высотой этого треугольника, а значит апофемой пирамиды (l = 2).
Периметр основания - сумма всех сторон треугольника ABC. Треугольник равносторонний, следовательно
Pосн = AB + BC + AC = 3·AB = 3·1 = 3.
Таким образом Sб = Pосн· l/2 = 3·2/2 = 3. Ответ: 3