∠BAC; AM – биссектриса (∠1=∠2);
KM-перпендикуляр к AB; ML-перпендикуляр к AC.
Доказать: KM=МL.
Доказательство: AM – общая гипотенуза, ∠1=∠2 → ΔAKM=Δ ALM по гипотенузе и острому углу → KM=МL. Ч.т.д.
T Каждая точка, лежащая внутри неразвернутого угла и равноудаленная от его сторон, лежит на биссектрисе этого угла.
Дано: ∠BAC; KM-перпендикуляр к AB; ML-перпендикуляр к AC; KM=МL.
Доказать: AM – биссектриса ∠BAC.
Доказательство: AM – общая гипотенуза, KM=МL → ΔAKM=Δ ALM по гипотенузе и катету → ∠1=∠2, то есть AM – биссектриса ∠BAC . Ч.т.д.
A
B
C
K
L
M
1
2