Тетраэдр и параллелепипед

Содержание

Слайд 2

Задача 1 Как при помощи шести спичек сложить четыре одинаковых треугольника?

Задача 1 Как при помощи шести спичек сложить четыре одинаковых треугольника?

Слайд 3

Задача. Как при помощи шести спичек сложить четыре одинаковых треугольника?

Как называется

Задача. Как при помощи шести спичек сложить четыре одинаковых треугольника? Как называется эта фигура?
эта фигура?

Слайд 4

Тетраэдр

Тетраэдр

Слайд 5

S

Понятие тетраэдра

А

В

С

Тетраэдр – (греч. tetréedro, от tetra, в сложных словах четыре и

S Понятие тетраэдра А В С Тетраэдр – (греч. tetréedro, от tetra,
hedra – основание, грань)

Слайд 6

Элементы тетраэдра

Грани (4)

Ребра (6)

Вершины (4)

Основание

Элементы тетраэдра Грани (4) Ребра (6) Вершины (4) Основание

Слайд 7

развертка тетраэдра

Грани

Основание

развертка тетраэдра Грани Основание

Слайд 8

параллелепипед

параллелепипед

Слайд 9

Наклонный параллелепипед

Параллелепипед (от греч. παράλλος − параллельный и греч. επιπεδον  − плоскость) 

Наклонный параллелепипед Параллелепипед (от греч. παράλλος − параллельный и греч. επιπεδον −
− призма, основанием которой служит параллелограмм, или многогранник, у которого шесть граней и каждая из них − параллелограмм.

Слайд 10

Ребра (12)

Боковые грани (4)

Вершины (8)

Основания (2)

Ребра (12) Боковые грани (4) Вершины (8) Основания (2)

Слайд 11

Параллелепипед ABCDA1B1C1D1

Параллелепипед ABCDA1B1C1D1

Слайд 12

А

В

С

А1

D

D1

B1

C1

Свойства параллелепипеда (1)

Противоположные грани параллелепипеда параллельны и равны

А В С А1 D D1 B1 C1 Свойства параллелепипеда (1) Противоположные

Слайд 13

О

Свойства параллелепипеда (2)

Диагонали параллелепипеда пересекаются в одной точке и делятся этой точкой

О Свойства параллелепипеда (2) Диагонали параллелепипеда пересекаются в одной точке и делятся этой точкой пополам
пополам

Слайд 14

Прямой параллелепипед

Если боковые ребра параллелепипеда перпендикулярны плоскости основания, то такой параллелепипед называется

Прямой параллелепипед Если боковые ребра параллелепипеда перпендикулярны плоскости основания, то такой параллелепипед
прямым

боковые грани – прямоугольники

Слайд 15

Прямоугольный параллелепипед

Прямой параллелепипед, основания которого являются прямоугольниками называется прямоугольным

все грани – прямоугольники

Прямоугольный параллелепипед Прямой параллелепипед, основания которого являются прямоугольниками называется прямоугольным все грани – прямоугольники

Слайд 16

Свойства прямоугольного параллелепипеда

1° В прямоугольном параллелепипеде все шесть граней – прямоугольники

Свойства прямоугольного параллелепипеда 1° В прямоугольном параллелепипеде все шесть граней – прямоугольники
Все двугранные углы прямоугольного параллелепипеда– прямые

Слайд 17

Прямоугольный параллелепипед

Длины трех ребер, имеющих общую вершину, назовем измерениями прямоугольного параллелепипеда

длина, ширина

Прямоугольный параллелепипед Длины трех ребер, имеющих общую вершину, назовем измерениями прямоугольного параллелепипеда длина, ширина и высота
и высота

Слайд 18

Теорема о диагонали прямоугольного параллелепипеда

Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех

Теорема о диагонали прямоугольного параллелепипеда Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов
его измерений:

d2 = a2 + b2 + c2

a

b

c

d

Следствие.
Диагонали прямоугольного параллелепипеда равны

Имя файла: Тетраэдр-и-параллелепипед.pptx
Количество просмотров: 30
Количество скачиваний: 0