О точки X и Y отобразились на X' и Y'. Тогда, как ясно из определения центральной симметрии, OX' = -OX, OY' = -OY.
Вместе с тем XY = OY - OX, X'Y' = OY' - OX'
Поэтому имеем: X'Y' = -OY + OX = -XY
Отсюда выходит, что центральная симметрия является движением, изменяющим направление на противоположное и наоборот, движение, изменяющее направление на противоположное, есть центральная симметрия.
Y'
Y
X'
X
O
Свойство центральной симметрии: центральная симметрия переводит прямую (плоскость) в себя или в параллельную ей прямую (плоскость).