Содержание
- 2. Познакомимся на примере с возрастанием и убыванием функции. На рисунке ниже изображен график функции, определенной на
- 3. Возрастание и убывание четных функций Для четных функций задача нахождения промежутков возрастания и убывания сильно упрощается.
- 4. Возрастание и убывание функции синус Докажем, что синус возрастает на промеждутках [-π/2+2πn ; π/2+2πn], n -
- 5. Возрастание и убывание функции косинус Промежутками возрастания косинуса являются отрезки [-π+2πn ; 2πn], n - целое.
- 7. Скачать презентацию
Слайд 2Познакомимся на примере с возрастанием и убыванием функции. На рисунке ниже изображен
Познакомимся на примере с возрастанием и убыванием функции. На рисунке ниже изображен

график функции, определенной на отрезке [-1;10]. Эта функция возрастает на отрезках [-1;3] и [4;5], и убывает на отрезках [3;4] и [5,10].
Рассмотрим еще один пример. Очевидно, что функция y=x2 убывает на промежутке (-∞; 0] и возрастает на промежутке [0;∞). Видно, что график этой функции при изменении x от -∞ до 0 сначала опускается до нуля, а затем поднимается до бесконечности. Определение. Функция f возрастает на множестве P, если для любых x1 и x2 из множества P, таких, что x2>x1, выполнено неравенство f(x2) > f(x1). Определение. Функция f убывает на множестве P, если для любых x1 и x2 из множества P, таких, что x2>x1, выполнено неравенство f(x2) < f(x1). Иначе говоря, функция f называется возрастающей на множестве P, если большему значению аргумента из этого множества соответствует большее значение функции. Функция f называется убывающей на множестве P, если большему значению аргумента соответствует меньшее значение функции.
Рассмотрим еще один пример. Очевидно, что функция y=x2 убывает на промежутке (-∞; 0] и возрастает на промежутке [0;∞). Видно, что график этой функции при изменении x от -∞ до 0 сначала опускается до нуля, а затем поднимается до бесконечности. Определение. Функция f возрастает на множестве P, если для любых x1 и x2 из множества P, таких, что x2>x1, выполнено неравенство f(x2) > f(x1). Определение. Функция f убывает на множестве P, если для любых x1 и x2 из множества P, таких, что x2>x1, выполнено неравенство f(x2) < f(x1). Иначе говоря, функция f называется возрастающей на множестве P, если большему значению аргумента из этого множества соответствует большее значение функции. Функция f называется убывающей на множестве P, если большему значению аргумента соответствует меньшее значение функции.
Слайд 3Возрастание и убывание четных функций
Для четных функций задача нахождения промежутков возрастания и
Возрастание и убывание четных функций
Для четных функций задача нахождения промежутков возрастания и

убывания сильно упрощается. Достаточно всего лишь найти промежутки возрастания и убывания при x≥0 (см. рисунок внизу).
Пусть, например, функция f четна и возрастает на промежутке [a;b], где b>a≥0. Докажем, что эта функция убывает на промежутке [-b; -a].
Действительно, пусть -a≥x2>x1≥-b. Тогда f(-x2)=f(x2), f(-x1)=f(x1), причем a≤-x2<-x1≤b, и, поскольку f возрастает на [a;b], имеем f(-x1)>f(-x2), то есть f(x1)>f(x2).
Слайд 4Возрастание и убывание функции синус
Докажем, что синус возрастает на промеждутках [-π/2+2πn ;
Возрастание и убывание функции синус
Докажем, что синус возрастает на промеждутках [-π/2+2πn ;

π/2+2πn], n - целое. В силу периодичности функции синуса доказательство достаточно провести для отрезка [-π/2 ; π/2]. Пусть x2 > x1. Применим формулу разности синусов и найдем:
Из неравенства -π/2 ≤ x1 < x2 ≤ π/2 следует, что и , поэтому и , следовательно и .
Это доказывает, что на указанных промежутках синус возрастает.
Аналогичным образом легко доказать, что промежутки [π/2+2πn ; 3π/2+2πn], n - целое, являются промежутками убывания функции синуса.
Полученный результат можно легко проиллюстрировать с помощью рисунка единичной окружности (см. рисунок ниже). Если -π/2 ≤ t1 < t2 ≤ π/2, то точка Pt2 имеет ординату большую, чем точка Pt1. Если же π/2 ≤ t1 < t2 ≤ 3π/2, то ордината точки Pt2 меньше, чем ордината точки Pt1.
Слайд 5Возрастание и убывание функции косинус
Промежутками возрастания косинуса являются отрезки [-π+2πn ;
Возрастание и убывание функции косинус
Промежутками возрастания косинуса являются отрезки [-π+2πn ;

2πn], n - целое. Промежутками убывания косинуса являются отрезки [2πn ; π + 2πn], n - целое. Доказательство этих утверждений можно провести аналогично доказательству для синуса.
Однако, проще воспользоваться формулой приведения cos(x) = sin(x + π/2), из которой сразу следует, что промежутками возрастания косинуса являются промежутки возрастания синуса, сдвинутые на π/2 влево. Аналогичное утверждение можно сделать и для промежутков убывания.
- Предыдущая
vzaimno-obratnye-funkcii.pptСледующая -
zakony-algebry-logiki.pptx
Презентация на тему Государственный бюджет
Доказательство тождеств
Неравенства и их решения
Решение систем линейных уравнений (7 класс)
Презентация на тему ТЕСТ «Логистика
Методы решения иррациональных уравнений Автор: Макарова Татьяна Павловна, учитель математики высшей категории ГБОУ СОШ №618 г.
Metod-racionalizacii.pptx
Формулы Виета и устное решение квадратных уравнений Кузнецова Лариса Викторовна учитель математики МБОУ СОШ №1 г. Климовск
reshenie-prosteyshih-logarifmicheskih-neravenstv.ppt
Производная
Презентация на тему Состояние правового регулирования экологических прав граждан и общественных организаций по российскому зако
Признаки делимости чисел
Презентация на тему Монизм, дуализм плюрализм в трактовке Бытия
Презентация на тему Центральная Азия
Презентация на тему Программа менеджмента качества Э. Деминга
Презентация на тему Хрусталь
Функции и графики в школьном курсе математики ТМОМ Методика изучения основных разделов предметного содержания школьного к
Preobrazovanie-grafikov-trigonometricheskih-funkciy.ppt
Математика 5 класс
Системы линейных уравнений с двумя переменными
Logarifmicheskaya-funkciya.ppt
Методы решения систем уравнений МОУ - СОШ №6 Учитель математики Миссюра Ирина Николаевна
Чётные и нечётные функции
Арифметическая прогрессия
Целое уравнение и его корни Подготовила: учитель математики МОУ сош №30 имени А.И.Колдунова Кутоманова Е.М. 2010-2011 учебный год
Определение линейной функции
Уравнения, содержащие знак модуля
Первообразная