Всё о неравенствах Работу выполнил Попов Игорь ученик 9-класса

Слайд 2

Определение неравенств строгих и нестрогих

Соотношения а > b и а < b,

Определение неравенств строгих и нестрогих Соотношения а > b и а b
так же как и соотношения а > b и а <  b, называются неравенствами. Неравенства, содержащие знак > или знак < , называются строгими, а неравенства, содержащие знак > или знак <, — нестрогими. Например, неравенства π < 4 и 2π > 6 — строгие, а неравенства 17 > 17 и 3 < 4 — нестрогие.

Слайд 3

Верные и неверные неравенства

Величины, принимающие различные числовые значения, могут быть верны

Верные и неверные неравенства Величины, принимающие различные числовые значения, могут быть верны
для одних значений этих величин и неверны для других. Так, неравенство x2 - 4x + 3 > 0 верно при х = 4 и неверно при х = 2. Для Н. этого типа возникает вопрос об их решении, т. е. об определении границ, в которых следует брать входящие в Н. величины для того, чтобы Н. были справедливы. Так, переписывая неравенство x2 - 4x + 3 > 0 в виде: (х - 1)(х - 3) > 0, замечают, что оно будет верно для всех х, удовлетворяющих одному из следующих неравенств: х < 1, х > 3, которые и являются решением данного Н.

Слайд 4

Линейное неравенство

Линейным неравенством с одной переменной называется неравенство вида ах >b (или

Линейное неравенство Линейным неравенством с одной переменной называется неравенство вида ах >b
ах < b, ах > b, ах < b).

Неравенствами, приводимыми к линейным,
называются неравенства: ах+b > 0 (или ах + b < 0, ax + b < 0, ax + b > cx + d или ax + b < cx + d). У этих неравенств левая и правая части представляют собой линейные функции относительно х. Такие неравенства в процессе преобразований сводятся к линейным.

Слайд 5

Решение линейного неравенства

1. ax + b > 0.
2. ах+b > 0

     2.

Решение линейного неравенства 1. ax + b > 0. 2. ах+b > 0 2.
Имя файла: Всё-о-неравенствах-Работу-выполнил-Попов-Игорь-ученик-9-класса.pptx
Количество просмотров: 1848
Количество скачиваний: 10