Algebraic constructions generated by causal structure of space-times

Содержание

Слайд 2

-algebras

*-homomorphism

 

Algebraic Quantum Field Theory (AQFT). Tools

-algebras *-homomorphism Algebraic Quantum Field Theory (AQFT). Tools

Слайд 4

Algebraic Quantum Field Theory (AQFT)

Haag-Kastler axioms
Isotony
Causality
Covariance
Time slice axiom
Spectrum condition

 

 

1,2

Haag, R., Kastler, D.:

Algebraic Quantum Field Theory (AQFT) Haag-Kastler axioms Isotony Causality Covariance Time slice
An algebraic approach to quantum field theory. J. Math. Phys. 5(7), 848–861 (1964)

1

Araki, H.: Mathematical Theory of Quantum Fields, vol. 101. Oxford UniversityPress, Oxford (1999)

2

Слайд 5

Algebraic Quantum Field Theory (AQFT)

Isotony

 

Haag-Kastler axioms

 

 

 

Algebraic Quantum Field Theory (AQFT) Isotony Haag-Kastler axioms

Слайд 6

Microcausality
(locality)

 

Algebraic Quantum Field Theory (AQFT)

Haag-Kastler axioms

Microcausality (locality) Algebraic Quantum Field Theory (AQFT) Haag-Kastler axioms

Слайд 7

Algebraic Quantum Field Theory (AQFT)

Haag-Kastler axioms

Algebraic Quantum Field Theory (AQFT) Haag-Kastler axioms

Слайд 8

Algebraic Quantum Field Theory (AQFT)

Haag-Kastler axioms

 

Algebraic Quantum Field Theory (AQFT) Haag-Kastler axioms

Слайд 9

Minkowski space-time

the family of upper cones

the family of lower cones

Minkowski space-time the family of upper cones the family of lower cones

Слайд 10

Operations on upper cones

addition

multiplication

x

y

z

x

y

z

Operations on upper cones addition multiplication x y z x y z

Слайд 11

Addition and multiplication on upper cones. Properties

idempotency

commutativity

associativity

absorption identity

x

y

x

y

x

=

=

Addition and multiplication on upper cones. Properties idempotency commutativity associativity absorption identity

Слайд 12

Distributivity of the obtained lattice

=

x

y

z

x

y

z

=

x

y

z

x

y

z

Distributivity of the obtained lattice = x y z x y z

Слайд 13

Bijection of distributive lattices

and

Bijection T
transforms one cone into another without changing

Bijection of distributive lattices and Bijection T transforms one cone into another
the vertex

x

y

x

y

T

Слайд 14

Operations on diamonds

x

y

addition

multiplication

‘x

‘’x

‘y

‘’y

‘x

‘’x

‘y

‘’y

Operations on diamonds x y addition multiplication ‘x ‘’x ‘y ‘’y ‘x ‘’x ‘y ‘’y

Слайд 15

Addition and multiplication on diamonds. Properties

idempotency

commutativity

associativity

absorption identity

‘x

‘’x

‘y

‘’y

‘x

‘’x

‘y

‘’y

=

=

Addition and multiplication on diamonds. Properties idempotency commutativity associativity absorption identity ‘x

Слайд 16

Distributivity of the obtained lattice

’x

‘’’x

’y

‘’’y

’’x

’’y

’x

’’’x

’y

’’’y

’’x

’’y

=

The distributive identities for the introduced operations:
addition =

Distributivity of the obtained lattice ’x ‘’’x ’y ‘’’y ’’x ’’y ’x
“union” and multiplication=“ intersection”
hold only when the involved intersections of diamonds are nonempty

Слайд 17

Distributivity of the obtained lattice

’x

’’x

’y

’’y

’’’x

’’’y

’x

’’x

’y

’’y

’’’x

’’’y

=

The distributive identities for the introduced operations:
addition =

Distributivity of the obtained lattice ’x ’’x ’y ’’y ’’’x ’’’y ’x
“union” and multiplication=“intersection”
hold only when the involved intersections of diamonds are nonempty
Имя файла: Algebraic-constructions-generated-by-causal-structure-of-space-times.pptx
Количество просмотров: 49
Количество скачиваний: 0