- Главная
- Математика
- Эллипсоид — поверхность в трёхмерном пространстве

Содержание
Слайд 2Эллипсоид — поверхность в трёхмерном пространстве, полученная деформацией сферы вдоль трёх взаимно
Эллипсоид — поверхность в трёхмерном пространстве, полученная деформацией сферы вдоль трёх взаимно

перпендикулярных осей. Каноническое уравнение эллипсоида в декартовых координатах, совпадающих с осями деформации эллипсоида:
где a,b,c — произвольные положительные числа.
Величины a, b, c называют полуосями эллипсоида. Также эллипсоидом называют тело, ограниченное поверхностью эллипсоида. Эллипсоид представляет собой одну из возможных форм поверхностей второго порядка.
где a,b,c — произвольные положительные числа.
Величины a, b, c называют полуосями эллипсоида. Также эллипсоидом называют тело, ограниченное поверхностью эллипсоида. Эллипсоид представляет собой одну из возможных форм поверхностей второго порядка.
Слайд 3В случае, когда пара полуосей имеет одинаковую длину, эллипсоид может быть получен
В случае, когда пара полуосей имеет одинаковую длину, эллипсоид может быть получен

вращением эллипса вокруг одной из его осей. Такой эллипсоид называют эллипсоидом вращения или сфероидом.
Эллипсоид более точно, чем сфера, отражает идеализированную поверхность Земли.
Объём эллипсоида:
Площадь поверхности эллипсоида вращения
Числа и точки на прямой
Законы булевой алгебры
Геометрические тела. Многогранники
Квадратичная функция и её график
Дроби и проценты
Презентация на тему Решение неравенств методом интервалов
Натуральный ряд чисел
Сравни площади фигур на глаз
Презентация на тему Итоговое повторение курса алгебры за 8 класс
Теорема Пифагора. Учебник
Исследование функции при помощи производной
Темір жолдың жылжымалы құрамын пайдалану, жөндеу және техникалық қызмет көрсету (түрлері бойынша)
Декартовы координаты на плоскости (решение задач)
Черчение геометрических фигур не отрывая карандаш от бумаги
Сказочная страна математики
Числовая окружность в координатной плоскости
Алгоритмы на графах
Динамика системы вблизи цикла
Прямоугольные треугольники
Геометрическая интерпретация содержания задачи – условие успешного обучения каждого школьника решению математической задачи
Уравнение линии на плоскости
Повторение и закрепление. Итоговое повторение за год. 4 класс
Производная частного двух функций
Неравенство треугольника (7 класс)
Познакомимся с письменным приёмом умножения на числа, оканчивающиеся нулями
Устные упражнения по теме: корень п –ой степени
Модуль действительного числа. Решение уравнений с модулем
Усечённый конус