Геометрическая прогрессия. Урок 1

Слайд 2

Геометрическая прогрессия – это числовая последовательность, первый член которой отличен от нуля

Геометрическая прогрессия – это числовая последовательность, первый член которой отличен от нуля
и каждый член, начиная со второго равен предыдущему умноженному на одно и тоже число не равное нулю.

-геометрическая прогрессия,

если для всех натуральных n выполняется равенство

-знаменатель геометрической прогрессии (число)

Слайд 3

Назвать первый член и знаменатель геометрической прогрессии:

4, 2, 1, …

-10, 20, -40,

Назвать первый член и знаменатель геометрической прогрессии: 4, 2, 1, … -10,

-50, 10, -2, …

6, 12, 24, …

Слайд 4

Формула n-го члена геометрической прогрессии

Формула n-го члена геометрической прогрессии

Слайд 5

Доказать, что последовательность, заданная формулой

является геометрической прогрессией.

Доказать, что последовательность, заданная формулой является геометрической прогрессией.

Слайд 6

-геометрическая прогрессия, если для всех натуральных n выполняется равенство

-знаменатель геометрической прогрессии (число)

где

-геометрическая прогрессия, если для всех натуральных n выполняется равенство -знаменатель геометрической прогрессии (число) где

Слайд 7

Доказать, что последовательность, заданная формулой

является геометрической прогрессией.

Решение:

при всех n.

-частное не зависит от

Доказать, что последовательность, заданная формулой является геометрической прогрессией. Решение: при всех n.
n

Следовательно

- геометрическая прогрессия

Имя файла: Геометрическая-прогрессия.-Урок-1.pptx
Количество просмотров: 34
Количество скачиваний: 0