Инварианты. Систематизация задач на инварианты по типам

Содержание

Слайд 2

Актуальность

Этот проект является продолжением работы, начатой в прошлом году. Мы познакомились с

Актуальность Этот проект является продолжением работы, начатой в прошлом году. Мы познакомились
понятием инварианта, изучили историю задач, связанных с инвариантами. Так же мы выяснили, что при решении таких задач возникает, много трудностей и решили попробовать классифицировать их так, чтобы по возможности упростить решение.

Слайд 3

Цель и Задачи

Цель: Систематизировать задачи на инварианты по типам и исследовать решение

Цель и Задачи Цель: Систематизировать задачи на инварианты по типам и исследовать
каждого типа
Задачи: 1. Решить ряд задач и подробно исследовать способы решения
2. Разделить задачи на инварианты по типам
3. Для каждого типа составить определенный метод решения

Слайд 4

Определение

Инвариа́нт — это свойство некоторого класса, остающееся неизменным при преобразованиях определённого типа. Синонимы: независимость, неизменность,

Определение Инвариа́нт — это свойство некоторого класса, остающееся неизменным при преобразованиях определённого
симметричность, симметрия

Слайд 5

Основоположник

Дави́д Ги́льберт  (23 января 1862 — 14 февраля 1943) - немецкий математик-универсал, который внёс значительный вклад в

Основоположник Дави́д Ги́льберт (23 января 1862 — 14 февраля 1943) - немецкий
развитие многих областей математики (включая теорию инвариантов).

Слайд 6

В ходе работы мы выяснили, что для решения некоторых задач на инварианты

В ходе работы мы выяснили, что для решения некоторых задач на инварианты
нужно знать материал темы «Чет и нечет», поэтому считаем нужным, занести информацию из этой темы в наш проект:
Формула записи :
Четность – х
Нечетность – х+1/х-1
Арифметика Чета и Нечета:
Чет + Чет = х + х = 2х
Чет + Нечет = х + х + 1 = 2х + 1
Нечет + Нечет = х + 1 + х + 1 = 2х + 2 = 3х

Слайд 7

Инвариантные задачи можно разделить на группы  по виду начальных данных:

1) В задаче

Инвариантные задачи можно разделить на группы по виду начальных данных: 1) В
требуется доказать, что существует некий инвариант, причем он явно задан в условии.
2) В задаче ничего не говорится и не намекается на инварианты - их надо увидеть самостоятельно.

Слайд 8

Социологический опрос

Мы провели социологический опрос среди участников 6А класса. В опросе принимало

Социологический опрос Мы провели социологический опрос среди участников 6А класса. В опросе
участие 25 человек.
На вопрос «Знаете ли вы, что такое инвариант?» ответили :
«да»- 64% (16чел.)
«нет» – 36% (9чел.)

Слайд 9

Социологический опрос

На вопрос «Встречались ли вам инварианты в жизни?» ответили :
«нет» -

Социологический опрос На вопрос «Встречались ли вам инварианты в жизни?» ответили :
40% (10чел.)
«да» - 60% (15чел.)

Слайд 10

Виды задач на инварианты:

1) Задачи на четность
2) Задачи на делимость
3) Задачи

Виды задач на инварианты: 1) Задачи на четность 2) Задачи на делимость
с полуинвариантами
4) «Шахматные» задачи
5) Задачи, неподходящие к первым четырем типам

Слайд 11

Задача на четность

На вешалке висят 20 платков. 17 девочек по очереди подходят

Задача на четность На вешалке висят 20 платков. 17 девочек по очереди
к вешалке и либо снимают, либо вешают платок. Может ли после ухода девочек остаться ровно 10 платков?

Слайд 12

Решение:

1) После первого подхода платков останется нечетное количество (19 или 21)
2) После

Решение: 1) После первого подхода платков останется нечетное количество (19 или 21)
следующего шага четность меняется (18,20,22)
3) Соответственно после 17 шагов останется нечетное количество платков, поскольку 17 – нечетное число.

Слайд 13

Задача на делимость

Из цифр 2, 3, 4,… 9 составили два натуральных числа.

Задача на делимость Из цифр 2, 3, 4,… 9 составили два натуральных
Каждая цифра использовалась один раз. Могло ли одно из этих чисел оказаться вдвое больше другого?

Слайд 14

Решение:

1) Представим полученные числа в виде а и 2а.
2) Соответственно по признаку

Решение: 1) Представим полученные числа в виде а и 2а. 2) Соответственно
делимости на три, мы можем сказать, что сумма этих чисел будет делиться на три (а + 2а= 3а : 3 = а), то есть сумма всех чисел должна делиться на 3, чтобы на поставленный вопрос ответить «Да».
3) 2+3+4+5+6+7+8+9=44 не делится на 44, а значит составить такие числа нельзя.

Слайд 15

Задача с полуинвариантами:

Полуинвариант – это величина, которая изменяется монотонно, то есть только

Задача с полуинвариантами: Полуинвариант – это величина, которая изменяется монотонно, то есть
увеличивается или только уменьшается (что и есть главным при решении подобных задач)

Слайд 16

Задача с полуинвариантом:

В десяти сосудах содержится 1, 2, 3,…, 10 литров воды.

Задача с полуинвариантом: В десяти сосудах содержится 1, 2, 3,…, 10 литров
Разрешается перелить из сосуда А в сосуд В столько воды, сколько имеется в В. Можно ли добиться, чтобы после нескольких переливаний в 5 сосудах оказалось 3 литра, а в остальных 6, 7, 8, 9, 10?

Слайд 17

Решение:

1) Первый вариант переливания:
В сосуде А чётное число литров (2х). В

Решение: 1) Первый вариант переливания: В сосуде А чётное число литров (2х).
сосуде В чётное число литров (2у). После переливания в сосуде А 2х-2у=2(х-у) литров (чётное число). В сосуде В 2у+2у=4у литров (чётное число). Количество чётных и нечётных чисел не изменилось.
2) Второй вариант переливания:
В сосуде А нечётное число литров  2х+1. В сосуде В чётное число литров 2у. После переливания в сосуде А 2х+1-2у=2(х-у)+1 литров (нечётное число). В сосуде В 2у+2у=4у литров. (чётное число). Количество чётных и нечётных чисел не изменилось.

Слайд 18

Решение:

3) Третий вариант переливания:
В сосуде А чётное число литров 2х. В сосуде

Решение: 3) Третий вариант переливания: В сосуде А чётное число литров 2х.
В нечётное число литров 2у+1. После переливания в сосуде А 2х-(2у+1)=2х-2у-1=2(х-у)-1 литров (нечётное число). В сосуде В 2у+1+2у+1=4у+2=2(2у+1) литров (чётное число). Количество чётных и нечётных чисел не изменилось.
4) Четвертый вариант переливания:
В сосуде А нечётное число литров 2х+1. В сосуде В нечётное число литров 2у+1. После переливания в сосуде А 2х+1-(2у+1)=2х+1-2у-1=2(х+у) литров (чётное число). В сосуде В 2у+1+2у+1=4у+2=2(2у+1) литров (чётное число). Число чётных литров увеличилось на 2, а нечётных уменьшилось на 2.

Слайд 19

«Шахматная» задача

На шахматной доске стоит черный слон и белая ладья.

«Шахматная» задача На шахматной доске стоит черный слон и белая ладья. Белые,
Белые, как и положено, ходят первыми. Могут ли черные выиграть, и если да, при какой тактике (оба игрока стараются выиграть)?

Слайд 20

Решение:

Слон может ходить только по клеткам одного цвета, и если ладья все

Решение: Слон может ходить только по клеткам одного цвета, и если ладья
время будет ходить на клетки противоположного цвета, то у слона не будет шанса победить. (Это и есть инвариант этой задачи)

Слайд 21

Задачи, неподходящие к первым четырем типам:

Так же существуют задачи на инварианты, которые

Задачи, неподходящие к первым четырем типам: Так же существуют задачи на инварианты,
не подходят к вышеперечисленным типам. Это происходит, поскольку существует огромное множество типов этих задач, но они редко используются в математике.

Слайд 22

Вывод:

1) Мы увидели множество разных типов задач на инварианты. Самые распространенные типы

Вывод: 1) Мы увидели множество разных типов задач на инварианты. Самые распространенные
мы представили в этом проекте
2) Для каждого типа задач на инварианты мы представили определенный метод решения
Имя файла: Инварианты.-Систематизация-задач-на-инварианты-по-типам.pptx
Количество просмотров: 46
Количество скачиваний: 0