Метод составления уравнений неголономной механики в задаче волнового твердотельного гироскопа

Содержание

Слайд 2

Зарождение динамики неголономных систем, по-видимому, следует отнести к тому времени, когда аналитический

Зарождение динамики неголономных систем, по-видимому, следует отнести к тому времени, когда аналитический
формализм, созданный трудами Л. Эйлера и Ж. Лагранжа, оказался,
к всеобщему удивлению, неприменимым к очень простым механическим задачам о качении без проскальзывания твердого тела по плоскости.

Слайд 3

Только в 1894 г.
в книге «Принципы механики, изложенные в новой связи»
(через 106

Только в 1894 г. в книге «Принципы механики, изложенные в новой связи»
лет после труда Лагранжа «Аналитическая механика» в 1788 году)
Генрих Герц ввел разделение
связей и механических систем на голономные и неголономные

Слайд 4

Достаточно полное изложение задач и методов неголономной механики представлено в монографии Ю.И.Неймарка,

Достаточно полное изложение задач и методов неголономной механики представлено в монографии Ю.И.Неймарка,
Н.А.Фуфаева "Динамика неголономных систем" 1967г.
К настоящему времени динамика неголономных систем оформлена как самостоятельная часть общей динамики механических систем-находит широкое применение в задачах современной техники, таких как движения автомобиля, самолетного шасси, железнодорожного колеса.
А методы активно используются в теории электрических машин

Слайд 5

Условия голономные и неголономные.
Условия (они же ограничения), накладываемые на движение механической системы

Условия голономные и неголономные. Условия (они же ограничения), накладываемые на движение механической
разделяют как потенциальные:
- накладываются на координаты
так и кинематические:
- накладываются на скорости (или компоненты скорости)

f[x,y]=0

f [x,y,x,y]=0

Слайд 6

Условия голономные и неголономные.

Задача учета кинематических связей в нелинейном виде не разработана,

Условия голономные и неголономные. Задача учета кинематических связей в нелинейном виде не
в линейном виде связь относительно скоростей выглядит следующим образом:
что позволяет эту связь записать через дифференциалы

 

 

Слайд 7

Условия голономные и неголономные.

Если дифференциальную связь (3) нельзя записать как полный дифференциал

Условия голономные и неголономные. Если дифференциальную связь (3) нельзя записать как полный
некоторой функции, не равно
То такая связь называется неинтегрируемой (неголономной), а механическая система с такой связью- неголономной системой. Соответственно, система с голономной связью – голономная.

d[F[x,y]] ≠ a1[x,y]·d[x] + a2[x,y]·d[y]

Слайд 8

Метод составления уравнений динамики механической системы при наложении различных типов условий на

Метод составления уравнений динамики механической системы при наложении различных типов условий на
переменные.

(2) а1 [ х,у ] х + а2 [х,у ] у =0

Для голономных связей: два метода:
использование функции связи как новой переменной-
( приводит к уменьшение общего числа переменных)
2) метод «множителей Лагранжа»,
(вводит условия через множители Лагранжа, которые физически представляют собой силы, обеспечивающие выполнение этих условий).

Слайд 9

Методы составления уравнений динамики механической системы при наложении различных типов условий на

Методы составления уравнений динамики механической системы при наложении различных типов условий на
переменные.

(2) а1 [ х,у ] х + а2 [х,у ] у =0

СЧИТАЕТСЯ что, неголономные связи допускают лишь второй способ составления уравнений динамики-метод множителей Лагранжа.
ПОЛАГАЕТСЯ, что уменьшение числа переменных здесь невозможно, потому что нет уравнений, с помощью которых можно бы выразить одни переменные через другие и приходится оперировать с большим количеством переменных, чем того требует число степеней свободы системы
.

Слайд 10

(2) а1 [ х,у ] х + а2 [х,у ] у =0


Однако, способ

(2) а1 [ х,у ] х + а2 [х,у ] у =0
уменьшения числа переменных вводя кинематические условия как новые переменные давно введена в механику А. Пуанкаре и Э. Картаном.
Картаном введена математическая конструкция , названная им интегральный инвариант динамики второго порядка (либо тензор "количество движения- энергии"),  

НОВЫЙ МЕТОД

Слайд 11


Указанное выражение получается совершенно естественно при вычислении вариации интеграла действия Гамильтона.

Указанное выражение получается совершенно естественно при вычислении вариации интеграла действия Гамильтона. В
В современных обозначениях:
dΩ =d[x1]⋀d[x]-d[H]⋀d[t]
где
⋀- внешнее умножение дифференциалов
x- координата
x1-скорость,
H=T+U- гамильтониан,
t- время

НОВЫЙ МЕТОД

Слайд 12

НОВЫЙ МЕТОД


Поскольку из этого дифференциального инварианта следует система уравнений движения -

НОВЫЙ МЕТОД Поскольку из этого дифференциального инварианта следует система уравнений движения -
любой механической системы, а сам дифференциальный инварриант состоит из дифференциальных форм, то введение условий как на сами кинематические переменные , так на их дифференциалы могут быть проведены в рамках самого интегрального инварианта .

Слайд 13


В этом случае использование интегрального инварианта механике по Картану, введение ограничений

В этом случае использование интегрального инварианта механике по Картану, введение ограничений на
на переменные механической системы (как голономных, так и неголономных) приводит к уменьшению числа независимых переменных.
Таким образом, применение интегрального инварианта механики соответствует способу введения ограничений на кинематические (как голономных , так и неголономных), как новых переменных, приводящих к уменьшению числа независимых переменных, что соответствует методу Лагранжа по замене переменных.

НОВЫЙ МЕТОД

Слайд 14

Применение нового метода к составлению уравнений механических движения волнового твердотельного гироскопа
(

Применение нового метода к составлению уравнений механических движения волнового твердотельного гироскопа (
по В.Ф. Журавлеву, Д.М. Климову)


Волновой твердотельный гироскоп (1985года ) упругое гибкое кольцо

Слайд 15


L=1/2 ((v1+(R-w) Ω)2+(w1+v Ω)2)- 1/2 κ12 (wss+vs )2-
-(1/2 )

L=1/2 ((v1+(R-w) Ω)2+(w1+v Ω)2)- 1/2 κ12 (wss+vs )2- -(1/2 ) δ12 (vs
δ12 (vs -w)2
условие нерастяжимости средней линии кольца
(vs+R-w)2+(ws+v)2=R2

Слайд 16


применение нового метода дало основные соотношения:
d[SID]us= 1/Ω2 (1/2 d[Ω2 rψ2+Ω2

применение нового метода дало основные соотношения: d[SID]us= 1/Ω2 (1/2 d[Ω2 rψ2+Ω2 vψ2]-((R+r)2+v2) d[Ω2/2])⋀d[ψ]⋀d[φ]+ +κ12d[r+rss]⋀(d[R Q]-(r+rss) d[φ])⋀d[t]=0
vψ2]-((R+r)2+v2) d[Ω2/2])⋀d[ψ]⋀d[φ]+ +κ12d[r+rss]⋀(d[R Q]-(r+rss) d[φ])⋀d[t]=0

Слайд 17


В рамках приближений введеных авторами книги (применение к полученным уравнениям упрощение

В рамках приближений введеных авторами книги (применение к полученным уравнениям упрощение v/

v/ -w->0(линеаризация) условия нерастяжимости средней линии), приводит, что изменение потенциала
П2=1/2 κ12 (-rss+vs )2
не происходит, остается только влияние кинетической энергии, искаженной условием нерастяжимости

Слайд 18

Эффект инертных свойств упругой деформацией гибкого кольца следует из уравнений кольца и

Эффект инертных свойств упругой деформацией гибкого кольца следует из уравнений кольца и
в случае когда потенциальной энергией можно пренебречь.
В рамках приближений, введенных авторами книги, влияние нерастяжимости средней линии гибкого кольца приводит к пренебрежению изменений потенциала.
остается только влияние кинетической энергии, искаженной условием нерастяжимости, которое удовлетворяет уравнению:

ВЫВОД

Слайд 19

Уравнение динамики для переменных гибкого кольца эквивалентно :
1/2 d[Ω2 rψ2+Ω2

Уравнение динамики для переменных гибкого кольца эквивалентно : 1/2 d[Ω2 rψ2+Ω2 vψ2]-((R+r)2+v2)
vψ2]-((R+r)2+v2) d[Ω2/2]=0
или
((R+r)2+v2) d[Ω2/2]=1/2 d[r12+v12]
подобному уравнению термодинамики :
T dS=dU+P dV
T dS=dQ- поток тепла
d[S]=dQ/T
где
Ω2/2-подобна энтропии ,(r2+v2)-подобна температуре

ВЫВОД